【題目】如圖,已知點P是⊙O外一點,PB切⊙O于點B,BA 垂直O(jiān)P于C,交⊙O于點A,連接PA、AO,延長AO,交⊙O于點E.
(1)求證:PA是⊙O的切線;
(2)若tan∠CAO= ,且OC=4,求PB的長.

【答案】
(1)證明:連接OB,則OA=OB,

∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分線,∴PA=PB,

在△PAO和△PBO中,

∴△PAO≌△PBO(SSS),

∴∠PAO=∠PBO,

∵PB為⊙O的切線,B為切點,

∴∠PBO=90°,

∴∠PAO=90°,即PA⊥OA,

∴PA是⊙O的切線;


(2)解:∵tan∠CAO= = ,且OC=4,

∴AC=6,

∴AB=12

在Rt△ACO中,AO= = =2

顯然△ACO∽△PAO,

= ,即 =

∴PA=3 ,

∴PB=PA=3


【解析】(1)證明△PAO≌△PBO,根據(jù)全等三角形的對應(yīng)角相等證得∠PAO=∠PBO,則∠PBO=90°,根據(jù)切線的判定定理證得;(2)在Rt△ACO中,利用勾股定理求得OA的長,然后根據(jù)△ACO∽△PAO,利用相似三角形的對應(yīng)邊的比相等求解.
【考點精析】認(rèn)真審題,首先需要了解解直角三角形(解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,點G,H分別是BC、CD邊上的點,直線GH與AB、AD的延長線相交于點E,F(xiàn),連接AG、AH.
(1)當(dāng)BG=2,DH=3時,則GH:HF= , ∠AGH=°;
(2)若BG=3,DH=1,求DF、EG的長;
(3)設(shè)BG=x,DH=y,若△ABG∽△FDH,求y與x之間的函數(shù)關(guān)系式,并求出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點O,直線y=﹣ x﹣6與x軸、y軸分別相交于A,B兩點.

(1)求出A,B兩點的坐標(biāo);
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點,在拋物線上是否存在點P,使得
SPDE= SABC?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y= x2+bx+c經(jīng)過點A(﹣4,0)、B(2,0)兩點,與y軸交于點C,頂點為D,對稱軸與x軸交于點H,過點H的直線m交拋物線于P、Q兩點,其中點P位于第二象限,點Q在y軸的右側(cè).

(1)求D點坐標(biāo);
(2)若∠PBA= ∠OBC,求點P的坐標(biāo);
(3)設(shè)PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題
(1)計算:(﹣ 1+( 0﹣4cos30°﹣| ﹣2|;
(2)先化簡,后求值:( ﹣x+1)÷ ,其中x= ﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別過點Pi(i,0)(i=1、2、…、n)作x軸的垂線,交 的圖象于點Ai , 交直線 于點Bi . 則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,D為BC的中點,以D為頂點作∠MDN=∠B.
(1)如圖(1)當(dāng)射線DN經(jīng)過點A時,DM交AC邊于點E,不添加輔助線,寫出圖中所有與△ADE相似的三角形.

(2)如圖(2),將∠MDN繞點D沿逆時針方向旋轉(zhuǎn),DM,DN分別交線段AC,AB于E,F(xiàn)點(點E與點A不重合),不添加輔助線,寫出圖中所有的相似三角形,并證明你的結(jié)論.

(3)在圖(2)中,若AB=AC=10,BC=12,當(dāng)SDEF= SABC時,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點,連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點P 的“雙角坐標(biāo)”.例如,點(1,1)的“雙角坐標(biāo)”為(45°,90°).
(1)點( , )的“雙角坐標(biāo)”為;
(2)若點P到x軸的距離為 ,則m+n的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設(shè)點M運動時間為x(s),△AMN的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案