【題目】如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過(guò)原點(diǎn)O,直線y=﹣ x﹣6與x軸、y軸分別相交于A,B兩點(diǎn).
(1)求出A,B兩點(diǎn)的坐標(biāo);
(2)若有一拋物線的對(duì)稱軸平行于y軸且經(jīng)過(guò)點(diǎn)M,頂點(diǎn)C在圓M上,開(kāi)口向下,且經(jīng)過(guò)點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)設(shè)(2)中的拋物線交x軸于D、E兩點(diǎn),在拋物線上是否存在點(diǎn)P,使得
S△PDE= S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】
(1)
解:對(duì)于直線y=﹣ x﹣6,
當(dāng)x=0,y=﹣6;
當(dāng)y=0,得0=﹣ x﹣6,解得x=﹣8.
故A(﹣8,0),B(0,﹣6);
(2)
解:在Rt△AOB中,AB= =10,
∵∠AOB=90°,
∴AB為⊙M的直徑,
∴點(diǎn)M為AB的中點(diǎn),M(﹣4,﹣3),
∵M(jìn)C∥y軸,MC=5,
∴C(﹣4,2),
設(shè)拋物線的解析式為y=a(x+4)2+2,
把B(0,﹣6)代入得16a+2=﹣6,解得a=﹣ ,
∴拋物線的解析式為y=﹣ (x+4)2+2,即y=﹣ x2﹣4x﹣6,
(3)
解:存在.
如圖,
當(dāng)y=0時(shí),﹣ (x+4)2+2=0,解得x1=﹣2,x2=﹣6,
∴D(﹣6,0),E(﹣2,0),
S△ABC=S△ACM+S△BCM= ×CM×8=20,
設(shè)P(t,﹣ x2﹣4x﹣6),
∵S△PDE= S△ABC,
∴ (﹣2+6)|﹣ t2﹣4t﹣6|= ×20,
即|﹣ t2﹣4t﹣6|=1,
當(dāng)﹣ t2﹣4t﹣6=﹣1,解得t1=﹣4+ ,t2=﹣4﹣ ,此時(shí)P點(diǎn)坐標(biāo)為(﹣4+ ,﹣1)或(﹣4﹣ ,﹣1);
當(dāng)﹣ t2﹣4t﹣6=1,解得t1=﹣4+ ,t2=﹣4﹣ ,此時(shí)P點(diǎn)坐標(biāo)為(﹣4+ ,1)或(﹣4﹣ ,1).
綜上所述,P點(diǎn)坐標(biāo)為(﹣4+ ,﹣1)或(﹣4﹣ ,﹣1)或(﹣4+ ,1)或(﹣4﹣ ,1)時(shí),使得S△PDE= S△ABC.
【解析】(1)根據(jù)一次函數(shù)與坐標(biāo)軸交點(diǎn)坐標(biāo)求法得出答案即可;(2)利用頂點(diǎn)式由B點(diǎn)坐標(biāo)求出二次函數(shù)解析式即可;(3)首先求出△ABC的面積,進(jìn)而求出D,E坐標(biāo),設(shè)P(t,﹣ x2﹣4x﹣6),根據(jù)S△PDE= S△ABC , 得到|﹣ t2﹣4t﹣6|=1,分兩種情況討論即可求出P點(diǎn)坐標(biāo).
【考點(diǎn)精析】利用勾股定理的概念對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=5,AC=4,BC=3,以邊AB的中點(diǎn)O為圓心,作半圓與AC相切,點(diǎn)P,Q分別是邊BC和半圓上的動(dòng)點(diǎn),連接PQ,則PQ長(zhǎng)的最大值與最小值的和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(﹣4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過(guò)點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問(wèn):是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“為了安全,請(qǐng)勿超速”.如圖,一條公路建成通車(chē),在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車(chē)輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車(chē)從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車(chē)超速了嗎?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了維護(hù)海洋權(quán)益,新組建的國(guó)家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國(guó)籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測(cè)得C在北偏東45°的方向上,A處測(cè)得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測(cè)得AD=120( )海里.
(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號(hào))
(2)已知在燈塔D周?chē)?00海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤(pán)查,圖中有無(wú)觸礁的危險(xiǎn)?
(參考數(shù)據(jù): =1.41, =1.73, =2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解“足球進(jìn)校園”活動(dòng)開(kāi)展情況,某中學(xué)利用體育課進(jìn)行了定點(diǎn)射門(mén)測(cè)試,每人射門(mén)5次,所有班級(jí)測(cè)試結(jié)束后,隨機(jī)抽取了某班學(xué)生的射門(mén)情況作為樣本,對(duì)進(jìn)球的人數(shù)進(jìn)行整理后,繪制了不完整的統(tǒng)計(jì)圖表,該班女生有22人,女生進(jìn)球個(gè)數(shù)的眾數(shù)為2,中位數(shù)為3.
女生進(jìn)球個(gè)數(shù)的統(tǒng)計(jì)表
進(jìn)球數(shù)(個(gè)) | 人數(shù) |
0 | 1 |
1 | 2 |
2 | x |
3 | y |
4 | 4 |
5 | 2 |
(1)求這個(gè)班級(jí)的男生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出扇形統(tǒng)計(jì)圖中進(jìn)2個(gè)球的扇形的圓心角度數(shù);
(3)該校共有學(xué)生1880人,請(qǐng)你估計(jì)全校進(jìn)球數(shù)不低于3個(gè)的學(xué)生大約有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)P是⊙O外一點(diǎn),PB切⊙O于點(diǎn)B,BA 垂直O(jiān)P于C,交⊙O于點(diǎn)A,連接PA、AO,延長(zhǎng)AO,交⊙O于點(diǎn)E.
(1)求證:PA是⊙O的切線;
(2)若tan∠CAO= ,且OC=4,求PB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=1,OC= ,在第二象限內(nèi),以原點(diǎn)O為位似中心將矩形AOCB放大為原來(lái)的 倍,得到矩形A1OC1B1 , 再以原點(diǎn)O為位似中心將矩形A1OC1B1放大為原來(lái)的 倍,得到矩形A2OC2B2…,以此類(lèi)推,得到的矩形A100OC100B100的對(duì)角線交點(diǎn)的縱坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com