(2012•樂山模擬)在課外小組活動時,小慧拿來一道題(原問題)和小東、小明交流.
原問題:如圖1,已知△ABC,∠ACB=90°,∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F.探究線段DF與EF的數(shù)量關(guān)系.
小慧同學的思路是:過點D作DG⊥AB于G,構(gòu)造全等三角形,通過推理使問題得解.
小東同學說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60度.
小明同學經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.
請你參考小慧同學的思路,探究并解決這三位同學提出的問題:
(1)寫出原問題中DF與EF的數(shù)量關(guān)系;
(2)如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明;
(3)如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中得到的結(jié)論是否發(fā)生變化?請寫出你的猜想并加以證明.