【題目】邵陽縣某校為了了解學(xué)生對語文(A)、數(shù)學(xué)(B)、英語(C)、物理(D)四科的喜愛程度(每人只選一科),特對八年級某班進(jìn)行了調(diào)查,并繪制成如下頻數(shù)和頻率統(tǒng)計表和扇形統(tǒng)計圖.

(1)求出這次調(diào)查的總?cè)藬?shù);

(2)求出表中a、b、c、d的值;

(3)若該校八年級有學(xué)生1000請你算出喜愛英語的人數(shù),并發(fā)表你的看法

【答案】(1)60;(2)a=30;b=0.2;c=0.1;d=12;(3)100人,由扇形統(tǒng)計圖知喜愛語文的人數(shù)占總?cè)藬?shù)的一半,是四個學(xué)科中人數(shù)最多的科目.

【解析】

(1)用C科目人數(shù)除以其所占比例;

(2)根據(jù)頻數(shù)=頻率×總?cè)藬?shù)求解可得;

(3)總?cè)藬?shù)乘以樣本中C科目人數(shù)所占比例,根據(jù)圖表得出正確的信息即可

1)這次調(diào)查的總?cè)藬?shù)為6÷(36÷360)=60(人)

(2)a=60×0.5=30(人);b=12÷60=0.2;c=6÷60=0.1;d=0.2×60=12(人)

(3)喜愛英語的人數(shù)為1000×0.1=100(人),由扇形統(tǒng)計圖知喜愛語文的人數(shù)占總?cè)藬?shù)的一半是四個學(xué)科中人數(shù)最多的科目

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過DDF⊥AC,垂足為F,交BCE,BD=BE,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,由下列條件可判定哪兩條直線平行,并說明根據(jù).

(1)1=2,________________________

(2)A=3,________________________

(3)ABC+C=180°,________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABE△ADC△ABC分別沿著AB、AC邊翻折180°形成的,若∠1:∠2:∠3=28:5:3,則∠α的度數(shù)為__度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廈深鐵路開通后,直線l1l2分別表示從深圳北開往潮陽站的動車和從潮陽站開往深圳的高鐵,兩車同時出發(fā),設(shè)動車離深圳北的距離為y1千米),高鐵離深圳的距離為距離y2千米),行駛時間為t小時),t的函數(shù)關(guān)系如圖所示

(1)高鐵的速度為   km/h;

(2)動車的速度為   km/h;

(3)動車出發(fā)多少小時與高鐵相遇?

(4)兩車出發(fā)經(jīng)過多長時間相距50千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD頂點A、B在x軸上,點D在y軸上,函數(shù)y= (x>0)的圖象經(jīng)過點C(2,3),直線AD交雙曲線于點E,并且EB⊥x軸,CD⊥y軸,EB與CD交于點F.

(1)若EB= OD,求點E的坐標(biāo);
(2)若四邊形ABCD為平行四邊形,求過A、D兩點的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點D是△ABC內(nèi)一點,DB=DC,∠DCB=30°,點E是BD延長線上一點,AE=AB.

(1)求∠ADE的度數(shù);

(2)求證:DE=AD+DC;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由甲、乙兩個工程隊承包某校校園綠化工程,甲、乙兩隊單獨完成這項工程所需時間比是3︰2,兩隊合做6天可以完成.

。1)求兩隊單獨完成此項工程各需多少天?

(2)此項工程由甲、乙兩隊合做6天完成任務(wù)后,學(xué)校付給他們20000元報酬,若

按各自完成的工程量分配這筆錢,問甲、乙兩隊各得到多少元?

查看答案和解析>>

同步練習(xí)冊答案