【題目】如圖所示,D為△ABC的邊AB的延長線上一點,過D作DF⊥AC,垂足為F,交BC于E,且BD=BE,求證:△ABC是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一次函數(shù)y=2x+4與x軸,y軸分別相交于A,B兩點,一次函數(shù)圖象與坐標軸圍成的△ABO,我們稱它為此一次函數(shù)的坐標三角形.把坐標三角形面積分成相等的二部分的直線叫做坐標三角形的等積線.
(1)求此一次函數(shù)的坐標三角形周長以及過點A的等積線的函數(shù)表達式;
(2)如圖2,我們把第一個坐標三角形△ABO記為第一代坐標三角形.第一代坐標三角形的等積線BA1,AB1記為第一對等積線,它們交于點O1,四邊形A1OB1O1稱為第一個坐標四邊形.求點O1的坐標和坐標四邊形A1OB1O1面積;
(3)如圖3.第一對等積線與坐標軸構(gòu)成了第二代坐標三角形△BA1O.△AOB1分別過點A,B作一條平分△BA1O,△AOB1面積的第二對等積線BA2,AB2,相交于點O2,如此進行下去.…,請直接寫出On的坐標和第n個坐標四邊形面積(用n表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC沿直線l向右移了3厘米,得△FDE,且BC=6厘米,∠B=40°.
(1)求BE;
(2)求∠FDB的度數(shù);
(3)找出圖中相等的線段(不另添加線段);
(4)找出圖中互相平行的線段(不另添加線段).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義:設(shè)一條直線與一條拋物線只有一個公共點,且這條直線與這條拋物線的對稱軸不平行,就稱直線與拋物線相切,這條直線是拋物線的切線.有下列命題: ①直線y=0是拋物線y= x2的切線;
②直線x=﹣2與拋物線y= x2 相切于點(﹣2,1);
③若直線y=x+b與拋物線y= x2相切,則相切于點(2,1);
④若直線y=kx﹣2與拋物線y= x2相切,則實數(shù)k= .
其中正確命題的是( )
A.①②④
B.①③
C.②③
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,AB=4cm,BC=3cm,點E是CD的中點,動點P從A點出發(fā),以每秒1cm的速度沿A→B→C→E 運動,最終到達點E.若點P運動的時間為x秒,那么當x= _________時,△APE的面積等于.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,OE⊥AB,OF⊥AC且OE=OF.
(1)如圖,當點O在BC邊中點時,試說明AB=AC;
(2)如圖,當點O在△ABC內(nèi)部時,且OB=OC,試說明AB與AC的關(guān)系;
(3)當點O在△ABC外部時,且OB=OC,試判斷AB與AC的關(guān)系.(畫出圖形,寫出結(jié)果即可,無須說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】比較下面每小題中兩個算式結(jié)果的大小(在橫線上填“>”、“<”或“=”).
⑴32+42 2×3×4;⑵22+22 2×2×2;⑶12+ 2×1×;
⑷(-2) 2+52 2×(-2)×5;⑸
通過觀察上面的算式,請你用字母來表示上面算式中反映的一般規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作菱形ADEF(A、D、E、F按逆時針排列),使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,求證:①BD=CF;②AC=CF+CD;
(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結(jié)論AC=CF+CD是否成立?若不成立,請寫出AC、CF、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當點D在邊CB的延長線上且其他條件不變時,補全圖形,并直接寫出AC、CF、CD之間存在的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com