【題目】(問題情境)

如圖1,四邊形ABCD是正方形,MBC邊上的一點(diǎn),ECD邊的中點(diǎn),AE平分∠DAM

(探究展示)

(1)證明:AM=AD+MC;

(2)AM=DE+BM是否成立?若成立,請給出證明;若不成立,請說明理由.

(拓展延伸)

(3)若四邊形ABCD是長與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請分別作出判斷,不需要證明.

【答案】(1)證明見解析;(2)AM=DE+BM成立,證明見解析;(3)①結(jié)論AM=AD+MC仍然成立;結(jié)論AM=DE+BM不成立.

【解析】

1)從平行線和中點(diǎn)這兩個條件出發(fā),延長AE、BC交于點(diǎn)N,易證△ADE≌△NCE,得到AD=CN,再證明AM=NM即可;2)過點(diǎn)AAF⊥AE,交CB的延長線于點(diǎn)F,

易證△ABF≌△ADE,從而證明AM=FM,即可得證;(3AM=DE+BM需要四邊形ABCD是正方形,故不成立,AM=AD+MC仍然成立.

(1)延長AE、BC交于點(diǎn)N,如圖1(1),

四邊形ABCD是正方形,∴AD∥BC∴∠DAE=∠ENC

∵AE平分∠DAM,∴∠DAE=∠MAE∴∠ENC=∠MAE∴MA=MN

△ADE△NCE中,

∴△ADE≌△NCE(AAS)∴AD=NC∴MA=MN=NC+MC=AD+MC

(2)AM=DE+BM成立.

證明:過點(diǎn)AAF⊥AE,交CB的延長線于點(diǎn)F,如圖1(2)所示.

四邊形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=ADAB∥DC

∵AF⊥AE,∴∠FAE=90°∴∠FAB=90°∠BAE=∠DAE

△ABF△ADE中,

∴△ABF≌△ADE(ASA)

∴BF=DE,∠F=∠AED

∵AB∥DC

∴∠AED=∠BAE

∵∠FAB=∠EAD=∠EAM,

∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM

∴∠F=∠FAM

∴AM=FM

∴AM=FB+BM=DE+BM

(3)①結(jié)論AM=AD+MC仍然成立.結(jié)論AM=DE+BM不成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運(yùn)走:

1)假如每天能運(yùn)x立方米,所需時間為y天,寫出yx之間的函數(shù)表達(dá)式;

2)若每輛拖拉機(jī)一天能運(yùn)12立方米,則5輛這樣的拖拉機(jī)要用多少天才能運(yùn)完?

3)在(2)的情況下,運(yùn)了8天后,剩下的任務(wù)要在不超過6天的時間內(nèi)完成,那么至少需要增加多少輛這樣的拖拉機(jī)才能按時完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的口袋里裝有僅顏色不同的黑、白兩種顏色的球20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn).將球攪勻后從中隨機(jī)摸出一個球,記下顏色,再把它放回袋中,不斷重復(fù),下表是活動進(jìn)行中記下的一組數(shù)據(jù)

摸球的次數(shù)

100

150

200

500

800

1000

摸到白球的次數(shù)

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

(1)請你估計,當(dāng)n很大時,摸到白球的頻率將會接近 (精確到0.1).

(2)假如你去摸一次,你摸到白球的概率是 ,摸到黑球的概率是

(3)試估算口袋中黑、白兩種顏色的球有多少只.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形ABCD中添加下列條件,不能判定四邊形ABCD是矩形的是(

A. 90°B. ACBDC. AC=BDD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點(diǎn)叫格點(diǎn)。

1)畫出向下平移2個單位,再向右平移3個單位后得到的

2)圖中的關(guān)系是:____________________;

3)圖中的面積是___________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:2x2﹣7x+6=0;

(2)已知關(guān)于x的方程x2+kx﹣2=0.

求證方程有兩個不相等的實(shí)數(shù)根

若方程的一個根是﹣1,求另一個根及k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)計算:

2)化簡求值.2(5y)[3(3y)] ,其中=,y=-2

3解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩塊全等的含角的直角三角板按圖的方式放置,已知,

固定三角板,然后將三角板繞點(diǎn)順時針方向旋轉(zhuǎn)至圖所示的位置,、分別交于點(diǎn)、,交于點(diǎn)

填空:當(dāng)旋轉(zhuǎn)角等于時,________度;

當(dāng)旋轉(zhuǎn)角等于多少度時,垂直?請說明理由.

將圖中的三角板繞點(diǎn)順時針方向旋轉(zhuǎn)至圖所示的位置,使,交于點(diǎn),試說明

查看答案和解析>>

同步練習(xí)冊答案