將兩塊斜邊長相等的等腰直角三角形按如圖擺放.
(1)如果把圖A中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得到圖B中除了△ABC≌△CED、△BCN≌△ACF外,你還能找到一對(duì)全等的三角形嗎?寫出你的結(jié)論,并說明理由;
(2)將△CED繞點(diǎn)C旋轉(zhuǎn):
①當(dāng)點(diǎn)M、N在AB上(不與A、B重合)時(shí),線段AM、MN、NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長線上(如圖C)時(shí),①中的關(guān)系式是否仍然成立?請(qǐng)說明理由.
分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得CF=CN,∠ACF=∠BCN,再求出∠ACM+∠BCN=45°,從而求出∠MCF=45°,然后利用“邊角邊”可以證明出△CMF和△CMN全等;
(2)①根據(jù)全等三角形對(duì)應(yīng)邊相等可得FM=MN,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=BN,∠CAF=∠B=45°,從而求出∠BAF=90°,再利用勾股定理列式即可得解;
②把△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AF=BN,CF=CN,∠BCN=∠ACF,再求出∠MCF=∠MCN,然后利用“邊角邊”證明△CMF和△CMN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得MF=MN,然后利用勾股定理列式即可得解.
解答:解:(1)△CMF≌△CMN.
理由∵△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,
∴CF=CN,∠ACF=∠BCN,
∵∠DCE=45°,
∴∠ACM+∠BCN=45°,
∴∠ACM+∠ACF=45°,
即∠MCF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
CF=CN
∠MCF=∠MCN
CM=CM
,
∴△CMF≌△CMN(SAS);
(2)①∵△CMF≌△CMN,
∴FM=MN,
∵∠CAF=∠B=45°,
∴∠FAM=∠CAF+∠BAC=45°+45°=90°,
∴AM2+AF2=FM2,
∴AM2+BN2=MN2
②如圖,把△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,
則AF=BN,CF=CN,∠BCN=∠ACF,
∵∠MCF=∠ACB-∠MCB-∠ACF=90°-(45°-∠BCN)-∠ACF=45°+∠BCN-∠ACF=45°,
∴∠MCF=∠MCN,
在△CMF和△CMN中,
CF=CN
∠MCF=∠MCN
CM=CM
,
∴△CMF≌△CMN(SAS),
∴FM=MN,
∵∠ABC=45°,
∴∠CAF=∠CBN=135°,
又∵∠BAC=45°,
∴∠FAM=∠CAF-∠BAC=135°-45°=90°,
∴AM2+AF2=FM2
∴AM2+BN2=MN2
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),此類題目根據(jù)相同的思路確定出全等的三角形,然后找出條件是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

將兩塊斜邊長相等的等腰直角三角形按如圖A擺放,斜邊AB分別交CD、CE于M、N點(diǎn),
(1)如果把圖A中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖B,求證:△CMF≌△CMN:
(2)將△CED繞點(diǎn)C旋轉(zhuǎn):
①當(dāng)點(diǎn)M、N在AB上(不與A、B重合)時(shí),線段AM、MN、NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長線上(如圖C)時(shí),①中的關(guān)系式是否仍然成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

將兩塊斜邊長相等的等腰直角三角形按如圖A擺放,斜邊AB分別交CD、CE于M、N點(diǎn),
(1)如果把圖A中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖B,求證:△CMF≌△CMN:
(2)將△CED繞點(diǎn)C旋轉(zhuǎn):
①當(dāng)點(diǎn)M、N在AB上(不與A、B重合)時(shí),線段AM、MN、NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長線上(如圖C)時(shí),①中的關(guān)系式是否仍然成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

將兩塊斜邊長相等的等腰直角三角形按如圖擺放.
(1)如果把圖A中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,得到圖B中除了△ABC≌△CED、△BCN≌△ACF外,你還能找到一對(duì)全等的三角形嗎?寫出你的結(jié)論,并說明理由;
(2)將△CED繞點(diǎn)C旋轉(zhuǎn):
①當(dāng)點(diǎn)M、N在AB上(不與A、B重合)時(shí),線段AM、MN、NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長線上(如圖C)時(shí),①中的關(guān)系式是否仍然成立?請(qǐng)說明理由.
作業(yè)寶

查看答案和解析>>

同步練習(xí)冊(cè)答案