如圖,AE平分∠BAD,DE平分∠ADC,AB⊥BC于B,∠1+∠2=90°,
說明:(1)AB∥CD;(2)DC⊥BC.
(1)根據(jù)角平分線的性質(zhì)可得∠BAE=∠1,∠CDE=∠2,再結(jié)合∠1+∠2=90°,即可得到∠BAD+∠CDA=180°,從而可以證得結(jié)論;
(2)根據(jù)垂直的性質(zhì)可得∠ABC=90°,根據(jù)平行線的性質(zhì)可得∠ABC+∠BCD=180°,即可得到∠BCD=90°,從而可以證得結(jié)論.
【解析】
試題分析:(1)∵AE平分∠BAD,DE平分∠ADC,
∴∠BAE=∠1,∠CDE=∠2
∵∠1+∠2=90°
∴∠BAE+∠CDE=90°
∴∠BAD+∠CDA=180°
∴AB∥CD;
(2)∵AB⊥BC
∴∠ABC=90°
∵AB∥CD
∴∠ABC+∠BCD=180°
∴∠BCD=90°
∴DC⊥BC.
考點(diǎn):角平分線的性質(zhì),平行線的判定和性質(zhì)
點(diǎn)評(píng):解題的關(guān)鍵是熟練掌握角的平分線把角分成相等的兩個(gè)小角,且都等于大角的一半.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:不詳 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com