【題目】如圖,在□ABCD中,∠ADC的平分線交AB于點(diǎn)E,∠ABC的平分線交CD于點(diǎn)F,求證:四邊形EBFD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】嘉嘉在電腦上設(shè)計(jì)了一個(gè)有理數(shù)的運(yùn)算程序:輸入a,加*鍵,再輸入b,得到運(yùn)算a*b=(a2-b2)÷(a-b) .
(1)求(-2)* * 的值;
(2)琪琪在運(yùn)用此程序計(jì)算時(shí),屏幕上顯示“該程序無(wú)法操作”,請(qǐng)你運(yùn)用所學(xué)的數(shù)學(xué)知識(shí)猜想一下,琪琪在輸入數(shù)據(jù)時(shí),可能出現(xiàn)什么情況?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個(gè)角:∠AOB,∠AOC和∠BOC,若其中有一個(gè)角的度數(shù)是另一個(gè)角度數(shù)的兩倍,則稱射線OC是∠AOB的“巧分線”.
(1)一個(gè)角的平分線 這個(gè)角的“巧分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN=α,且射線PQ是∠MPN的“巧分線”,則∠MPQ= ;(用含α的代數(shù)式表示出所有可能的結(jié)果)
【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點(diǎn)P從PN位置開始,以每秒10°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)PQ與PN成180°時(shí)停止旋轉(zhuǎn),旋轉(zhuǎn)的時(shí)間為t秒.
(3)當(dāng)t為何值時(shí),射線PM是∠QPN的“巧分線”;
(4)若射線PM同時(shí)繞點(diǎn)P以每秒5°的速度逆時(shí)針旋轉(zhuǎn),并與PQ同時(shí)停止,請(qǐng)直接寫出當(dāng)射線PQ是∠MPN的“巧分線”時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點(diǎn)上,則∠AED的正弦值等于( )
A.
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD中,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周長(zhǎng)為32cm,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。
(1)籃球和排球的單價(jià)各是多少元?
(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過(guò)800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫出其中最省錢的購(gòu)買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在日歷中任意圈出一個(gè)3×3的正方形,則里面九個(gè)數(shù)不滿足的關(guān)系式是( 。
A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6)
B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8)
C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5
D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,
(1)求AB的長(zhǎng);
(2)求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com