如圖所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下結(jié)論:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正確的個數(shù)是( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:根據(jù)已知找準(zhǔn)對應(yīng)關(guān)系,運用三角形全等的性質(zhì)“全等三角形的對應(yīng)角相等,對應(yīng)邊相等”求解即可.
解答:解:∵△ABC≌△AEF,AB=AE,∠B=∠E
∴EF=BC,∠EAF=∠BAC
∴∠EAB+∠BAF=∠FAC+∠BAF
即∠EAB=∠FAC
AC與AE不是對應(yīng)邊,不能求出二者相等,也不能求出∠FAB=∠EAB
∴①、②錯誤,③、④正確
故選B.
點評:本題考查的是全等三角形的性質(zhì);做題時要運用三角形全等的基本性質(zhì),結(jié)合圖形進行思考是十分必要的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖所示,△ABC和△ADE都是等邊三角形,且B、A、E在同一直線上,連接BD交AC于M,連接CE交AD于N,連接MN.
求證:(1)BD=CE;(2)BM=CN;(3)MN∥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

19、如圖所示,△ABC沿著直尺PQ平移到△A′B′C′,則:
(1)對應(yīng)點:
點A與點A′,點B與點B′,點C與點C′是對應(yīng)點.
;
(2)對應(yīng)線段:
AB與A′B′,BC與B′C′,CA與C′A′是對應(yīng)線段

(3)對應(yīng)角:
∠A與∠A′,∠B與∠B′,∠C與∠C′是對應(yīng)角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、已知如圖所示,△ABC與△A′B′C′關(guān)于原點O對稱,點A(-2,3),B(-4,2),C′(1,-1),則A′點的坐標(biāo)為
(2,-3)
,B′點的坐標(biāo)為
(4,-2)
,C點的坐標(biāo)為
(-1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,△ABC的周長為12,它的內(nèi)切圓⊙O的半徑為1,若向△ABC的內(nèi)部隨機地拋擲黃豆,則黃豆落入圓內(nèi)的概率是
π
6
π
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖所示,△ABC和△ABC外的一點A′,把△ABC平移,使A與A′重合.

查看答案和解析>>

同步練習(xí)冊答案