【題目】如圖,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC , 若AD=6,則CD是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】因?yàn)?/span>△ABC中,∠C=90° , ∠ABC=60° , 所以∠BAC=30°;因?yàn)?/span>BD平分∠ABC , 所以∠ABD=∠DBC=30° , 所以AD=BD,因?yàn)?/span>AD=6,所以CD=3,故C項(xiàng)正確.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用角的平分線和等腰三角形的判定,掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(簡(jiǎn)稱:等角對(duì)等邊).這個(gè)判定定理常用于證明同一個(gè)三角形中的邊相等即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖1,拋物線與x軸交于點(diǎn)、點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn),點(diǎn)為頂點(diǎn),已知點(diǎn)、點(diǎn)的坐標(biāo)分別為、。
(1)求拋物線的解析式;
(2)在直線上方的拋物線上找一點(diǎn),使的面積最大,求點(diǎn)坐標(biāo);
(3)如圖2,連結(jié)、,拋物線的對(duì)稱軸與x軸交于點(diǎn)。過(guò)拋物線上一點(diǎn)作,交直線于點(diǎn),求當(dāng)時(shí)點(diǎn)的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題. 大家知道 是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此 的小數(shù)部分我們不可能全部地寫出來(lái),但是由于1< <2,所以 的整數(shù)部分為1,將 減去其整數(shù)部分1,差就是小數(shù)部分 ﹣1,根據(jù)以上的內(nèi)容,解答下面的問(wèn)題:
(1) 的整數(shù)部分是 , 小數(shù)部分是;
(2)1+ 的整數(shù)部分是 , 小數(shù)部分是;
(3)若設(shè)2+ 整數(shù)部分是x,小數(shù)部分是y,求x﹣ y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=與拋物線y=﹣x2+bx+c交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為﹣8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
①設(shè)△PDE的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,當(dāng)△PDE周長(zhǎng)m最大時(shí),求點(diǎn)P的坐標(biāo),并求出m的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG(逆時(shí)針?lè)较蜃髡叫蜛PFG).隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.x=1是不等式-2x<1的解集
B.x=-3是不等式-x<1的解集
C.x>-2是不等式-2x<1的解集
D.不等式-x<1的解集是x<-1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C、D分別在扇形AOB的半徑OA、OB的延長(zhǎng)線上,且OA=3,AC=3-3,CD∥AB,并與弧AB相交于點(diǎn)M、N.
(1)求線段OD的長(zhǎng);
(2)若sin∠C=,求弦MN的長(zhǎng);
(3)在(2)的條件下,求優(yōu)弧MEN的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在式子-3<0,4x+3y>0,x=3,a2+2a+1≤8,x2+2xy+y2,x≠5,x2≥0中,不等式有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com