如圖,矩形紙片ABCD中,AB=8,將紙片折疊,使頂點(diǎn)B落在邊AD的E點(diǎn)上,BG=10.
(1)當(dāng)折痕的另一端F在AB邊上時(shí),如圖.求△EFG的面積;
(2)當(dāng)折痕的另一端F在AD邊上時(shí),如圖.證明四邊形BGEF為菱形,并求出折痕GF的長(zhǎng).

【答案】分析:根據(jù)軸對(duì)稱的性質(zhì),折疊前后圖形的形狀和大小不變和矩形的性質(zhì)及直角三角形的性質(zhì),同角的余角相等,相似三角形的判定和性質(zhì),平行四邊形和菱形的判定和性質(zhì)求解.
解答:解:(1)過(guò)點(diǎn)G作GH⊥AD,則四邊形ABGH為矩形,
∴GH=AB=8,AH=BG=10,由圖形的折疊可知△BFG≌△EFG,
∴EG=BG=10,∠FEG=∠B=90°;
∴EH=6,AE=4,∠AEF+∠HEG=90°,
∵∠AEF+∠AFE=90°,
∴∠HEG=∠AFE,
又∵∠EHG=∠A=90°,
∴△EAF∽△GHE,
,
∴EF=5,
∴S△EFG=EF•EG=×5×10=25.

(2)由圖形的折疊可知四邊形ABGF≌四邊形HEGF,
∴BG=EG,AB=EH,∠BGF=∠EGF,
∵EF∥BG,
∴∠BGF=∠EFG,
∴EF=EG,
∴BG=EF,
∴四邊形BGEF為平行四邊形,
又∵EF=EG,
∴平行四邊形BGEF為菱形;
連接BE,
BE,F(xiàn)G互相垂直平分,
在Rt△EFH中,
EF=BG=10,EH=AB=8,
由勾股定理可得FH=AF=6,
∴AE=AF+EF=16,
∴BE==8,
∴BO=4,
∴OG==2
∵四邊形BGEF是菱形,
∴FG=2OG=4,
答:折痕GF的長(zhǎng)是4
點(diǎn)評(píng):本題利用了:1、折疊的性質(zhì):折疊是一種對(duì)稱變換,它屬于軸對(duì)稱變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,矩形紙片ABCD中,AB=4,BC=4
3
,將矩形沿對(duì)角線AC剪開,解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4
3
),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形紙片ABCD中AB=6cm,BC=10cm,小明同學(xué)先折出矩形紙片ABCD的對(duì)角線AC,再分別精英家教網(wǎng)把△ABC、△ADC沿對(duì)角線AC翻折交AD、BC于點(diǎn)F、E.
(1)判斷小明所折出的四邊形AECF的形狀,并說(shuō)明理由;
(2)求四邊形AECF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(37):2.7 最大面積是多少(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開,解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第25章《圖形的變換》中考題集(30):25.3 軸對(duì)稱變換(解析版) 題型:解答題

如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開,解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•益陽(yáng))如圖,矩形紙片ABCD中,AB=4,BC=4,將矩形沿對(duì)角線AC剪開,解答以下問(wèn)題:
(1)在△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,△A1CD1是旋轉(zhuǎn)后的新位置(圖A),求此AA1的距離;
(2)將△ACD沿對(duì)角線AC向下翻折(點(diǎn)A、點(diǎn)C位置不動(dòng),△ACD和△ABC落在同一平面內(nèi)),△ACD2是翻折后的新位置(圖B),求此時(shí)BD2的距離;
(3)將△ACD沿CB向左平移,設(shè)平移的距離為x(0≤x≤4),△A2C1D3是平移后的新位置(圖C),若△ABC與△A2C1D3重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式.


查看答案和解析>>

同步練習(xí)冊(cè)答案