如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4)、D(2, n)三點.
(1)求拋物線的解析式及點D坐標;
(2)點M是拋物線對稱軸上一動點,求使BM-AM的值最大時的點M的坐標;
(3)如圖2,將射線BA沿BO翻折,交y軸于點C,交拋物線于點N,求點N的坐標;
(4)在(3)的條件下,連結(jié)ON,OD,如圖2,請求出所有滿足△POD∽△NOB的點P坐標(點P、O、D分別與點N、O、B對應).
(1)y=x2﹣3x;(2,﹣2);(2)(,);(3)();(4)()或().
解析試題分析:(1)根據(jù)曲線上點的坐標與方程的關系,將(3,0)、B(4,4)代入y=ax2+bx即可求得拋物線的解析式,令x=2,即可求得點D坐標;
(2)拋物線對稱軸上使BM-AM的值最大時的點M即直線AB與拋物線對稱軸的交點,從而應用待定系數(shù)法求出直線AB的解析式,即可求得點M的坐標;
(3)用待定系數(shù)法求出直線CB的解析式,由點N在直線CB和拋物線y=x2﹣3x上,即可求出N點的坐標;
(4)應用對稱或旋轉(zhuǎn)的性質(zhì)即可求得點P的坐標.
試題解析:(1)∵拋物線y=ax2+bx(a≠0)經(jīng)過A(3,0)、B(4,4),
∴拋物線的解析式是y=x2﹣3x.∴D點的坐標為(2,﹣2).
(2)設直線AB解析式為:y="kx+m," 將 A(3,0)、B(4,4)代人得
,解得. ∴直線AB解析式為:.
∵拋物線對稱軸為,當時, ,
∴當點M(,)時,BM-AM的值最大.
(3)∵直線OB的解析式為y=x,且A(3,0),
根據(jù)軸對稱性質(zhì)得出∠CBO=∠ABO,∠COB=∠AOB,OB="OB," ∴△AOB≌△COB.
∴OC="OA." ∴點C(0,3).
設直線CB的解析式為y=kx+3,過點(4,4),∴直線CB的解析式是.
∵點N在直線CB上,∴設點N(n,).
又點N在拋物線y=x2﹣3x上,∴,解得:n1=,n2=4(不合題意,舍去)。
∴N點的坐標為().
(4)如圖,將△NOB沿x軸翻折,得到△N1OB1,則N1(),B1(4,﹣4),
∴O、D、B1都在直線y=﹣x上.
∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1. ∴.
∴點P1的坐標為().
將△OP1D沿直線y=﹣x翻折,可得另一個滿足條件的點P2().
綜上所述,點P的坐標是()或().
考點:1.單動點和翻折問題;2. 待定系數(shù)法的應用,3. 曲線上點的坐標與方程的關系;4.二次函數(shù)的性質(zhì);5.相似三角形的判定和性質(zhì),6.分類思想的應用.
科目:初中數(shù)學 來源: 題型:解答題
已知點和點在拋物線上.
(1)求的值及點的坐標;
(2)點在軸上,且滿足△是以為直角邊的直角三角形,求點的坐標;
(3)平移拋物線,記平移后點A的對應點為,點B的對應點為. 點M(2,0)在x軸上,當拋物線向右平移到某個位置時,最短,求此時拋物線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線與x軸交于A(1,0)、B(﹣3,0)兩點,與y軸交于點C(0,3),設拋物線的頂點為D.
(1)求該拋物線的解析式與頂點D的坐標.
(2)試判斷△BCD的形狀,并說明理由.
(3)探究坐標軸上是否存在點P,使得以P、A、C為頂點的三角形與△BCD相似?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,黎叔叔想用60m長的籬笆靠墻MN圍成一個矩形花圃ABCD,已知墻長MN=30m.
(1)能否使矩形花圃ABCD的面積為400m2?若能,請說明圍法;若不能,請說明理由.
(2)請你幫助黎叔叔設計一種圍法,使矩形花圃ABCD的面積最大,并求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,已知二次函數(shù)的圖像經(jīng)過原點及點A(1,2),與x軸相交于另一點B.
(1)求:二次函數(shù)的解析式及B點坐標;
(2)若將拋物線以為對稱軸向右翻折后,得到一個新的二次函數(shù),已知二次函數(shù)與x軸交于兩點,其中右邊的交點為C點.點P在線段OC上,從O點出發(fā)向C點運動,過P點作x軸的垂線,交直線AO于D點,以PD為邊在PD的右側(cè)作正方形PDEF(當P點運動時,點D.點E、點F也隨之運動);
①當點E在二次函數(shù)y1的圖像上時,求OP的長.
②若點P從O點出發(fā)向C點做勻速運動,速度為每秒1個單位長度,同時線段OC上另一個點Q從C點出發(fā)向O點做勻速運動,速度為每秒2個單位長度(當Q點到達O點時停止運動,P點也同時停止運動).過Q點作x軸的垂線,與直線AC交于G點,以QG為邊在QG的左側(cè)作正方形QGMN(當Q點運動時,點G、點M、點N也隨之運動),若P點運動t秒時,兩個正方形分別有一條邊恰好落在同一條直線上(正方形在x軸上的邊除外),求此刻t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中的字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以拋物線頂點坐標為(m,2m-1),即x=m③,y=2m-1④.
當m的值變化時,x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將③代入④,得y=2x-1⑤.可見,不論m取任何實數(shù),拋物線頂點的縱坐標y和橫坐標x都滿足關系式:y=2x-1;
根據(jù)上述閱讀材料提供的方法,確定點(-2m, m-1)滿足的函數(shù)關系式為_______.
(2)根據(jù)閱讀材料提供的方法,確定拋物線頂點的縱坐標y與橫坐標x之間的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某商店以16元/支的價格進了一批鋼筆,如果以20元/支的價格售出,每月可以賣出200支,而每上漲1元就少賣10支,現(xiàn)在商店店主希望該筆月銷售利潤達1350元,則每支鋼筆應該上漲多少元錢?請你就該種鋼筆的漲價幅度和進貨量,通過計算給店主提出一些合理建議.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進價為每件20元的護眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關系可近似的看做一次函數(shù):y=-10x+500.
(1)設李明每月獲得利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?(6分)
(2)如果李明想要每月獲得2 000元的利潤,那么銷售單價應定為多少元?(3分)
(3)物價部門規(guī)定,這種護眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2 000元,那么他每月的成本最少需要多少元?(成本=進價×銷售量) (3分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某文具店銷售一種進價為10元/個的簽字筆,物價部門規(guī)定這種簽字筆的售價不得高于14元/個,根據(jù)以往經(jīng)驗:以12元/個的價格銷售,平均每周銷售簽字筆100個;若每個簽字筆的銷售價格每提高1元,則平均每周少銷售簽字筆10個. 設銷售價為x元/個.
(1)該文具店這種簽字筆平均每周的銷售量為 個(用含x的式子表示);
(2)求該文具店這種簽字筆平均每周的銷售利潤w(元)與銷售價x(元/個)之間的函數(shù)關系式;
(3)當x取何值時,該文具店這種簽字筆平均每周的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com