(2013•呼和浩特)在平面直角坐標系中,已知點A(4,0)、B(-6,0),點C是y軸上的一個動點,當∠BCA=45°時,點C的坐標為
(0,12)或(0,-12)
(0,12)或(0,-12)
分析:如解答圖所示,構(gòu)造含有90°圓心角的⊙P,則⊙P與y軸的交點即為所求的點C.
注意點C有兩個.
解答:解:設(shè)線段BA的中點為E,
∵點A(4,0)、B(-6,0),∴AB=10,E(-1,0).
(1)如答圖1所示,過點E在第二象限作EP⊥BA,且EP=
1
2
AB=5,則易知△PBA為等腰直角三角形,∠BPA=90°,PA=PB=5
2
;
以點P為圓心,PA(或PB)長為半徑作⊙P,與y軸的正半軸交于點C,
∵∠BCA為⊙P的圓周角,
∴∠BCA=
1
2
∠BPA=45°,即則點C即為所求.
過點P作PF⊥y軸于點F,則OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=5
2
,由勾股定理得:CF=
PC2-PF2
=7,
∴OC=OF+CF=5+7=12,
∴點C坐標為(0,12);
(2)如答圖2所示,在第3象限可以參照(1)作同樣操作,同理求得y軸負半軸上的點C坐標為(0,-12).
綜上所述,點C坐標為(0,12)或(0,-12).
故答案為:(0,12)或(0,-12).
點評:本題難度較大.由45°的圓周角聯(lián)想到90°的圓心角是解題的突破口,也是本題的難點所在.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•呼和浩特)某工廠現(xiàn)在平均每天比原計劃多生產(chǎn)50臺機器,現(xiàn)在生產(chǎn)600臺機器所需時間與原計劃生產(chǎn)450臺機器所需時間相同,現(xiàn)在平均每天生產(chǎn)
200
200
臺機器.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•呼和浩特)(1)計算:(
1
3
)-1-|-2+
3
tan45°|+(
2
-1.41)0

(2)化簡:(a-
1
a
a2-2a+1
a

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•呼和浩特)如圖,CD=CA,∠1=∠2,EC=BC,求證:DE=AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•呼和浩特)某區(qū)八年級有3000名學生參加“愛我中華知識競賽”活動.為了了解本次知識競賽的成績分布情況,從中抽取了200名學生的得分進行統(tǒng)計.
請你根據(jù)不完整的表格,回答下列問題:
成績x(分) 頻數(shù) 頻率
50≤x<60 10
0.05
0.05
60≤x<70 16 0.08
70≤x<80
40
40
0.2
80≤x<90 62
0.31
0.31
90≤x<100 72 0.36
(1)補全頻數(shù)分布直方圖;
(2)若將得分轉(zhuǎn)化為等級,規(guī)定50≤x<60評為“D”,60≤x<70評為“C”,70≤x<90評為“B”,90≤x<100評為“A”.這次全區(qū)八年級參加競賽的學生約有多少學生參賽成績被評為“D”?如果隨機抽查一名參賽學生的成績等級,則這名學生的成績等級哪一個等級的可能性大?請說明理由.

查看答案和解析>>

同步練習冊答案