(2006•長春)如圖,二次函數(shù)y=x2+bx+c的圖象經(jīng)過點M(1,-2)、N(-1,6).
(1)求二次函數(shù)y=x2+bx+c的關(guān)系式;
(2)把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點A、B的坐標(biāo)分別為(1,0),(4,0),BC=5.將△ABC沿x軸向右平移,當(dāng)點C落在拋物線上時,求△ABC平移的距離.

【答案】分析:(1)由于拋物線中只有b,c兩個待定系數(shù),因此可直接將M、N兩點的坐標(biāo)代入拋物線的解析式中求出拋物線的解析式.
(2)先在直角三角形ABC中,求出AC的長.由于△ABC是向右平移,因此C點的縱坐標(biāo)不變,可將C點的縱坐標(biāo)代入拋物線的解析式中,得出第一象限內(nèi)點的橫坐標(biāo),即為平移后C點的橫坐標(biāo),然后讓C點的橫坐標(biāo)減去OA的長即可得出平移的距離.
解答:解:(1)∵M(1,-2),N(-1,6)在二次函數(shù)y=x2+bx+c的圖象上,

解得
二次函數(shù)的關(guān)系式為y=x2-4x+1.

(2)Rt△ABC中,AB=3,BC=5,
∴AC=4,
4=x2-4x+1,x2-4x-3=0,
解得(負(fù)值不合題意舍去)
∵A(1,0),
∴點C落在拋物線上時,△ABC向右平移(1+)個單位.
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形平移變換、勾股定理等知識點.
(2)中弄清平移前后C點的縱坐標(biāo)不變是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2006•長春)如圖,將△AOB繞點O逆時針旋轉(zhuǎn)90°,得到△A′OB′.若點A的坐標(biāo)為(a,b),則點A'的坐標(biāo)為
(-b,a)
(-b,a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•長春)如圖,P為拋物線y=x2-x+上對稱軸右側(cè)的一點,且點P在x軸上方,過點P作PA垂直x軸于點A,PB垂直y軸于點B,得到矩形PAOB.若AP=1,求矩形PAOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省紹興市上虞市上浦鎮(zhèn)中學(xué)九年級數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•長春)如圖1,正方形ABCD的頂點A,B的坐標(biāo)分別為(0,10),(8,4),頂點C,D在第一象限.點P從點A出發(fā),沿正方形按逆時針方向運動,同時,點Q從點E(4,0)出發(fā),沿x軸正方向以相同速度運動.當(dāng)點P到達(dá)點C時,P,Q兩點同時停止運動.設(shè)運動時間為t(s).
(1)求正方形ABCD的邊長;
(2)當(dāng)點P在AB邊上運動時,△OPQ的面積S(平方單位)與時間t(s)之間的函數(shù)圖象為拋物線的一部分(如圖2所示),求P,Q兩點的運動速度;
(3)求(2)中面積S(平方單位)與時間t(s)的函數(shù)解析式及面積S取最大值時點P的坐標(biāo);
(4)若點P,Q保持(2)中的速度不變,則點P沿著AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減。(dāng)點P沿著這兩邊運動時,能使∠OPQ=90°嗎?若能,直接寫出這樣的點P的個數(shù);若不能,直接寫不能.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省寧波市十九中中考數(shù)學(xué)模擬考試四校聯(lián)考試卷(解析版) 題型:解答題

(2006•長春)如圖,在平面直角坐標(biāo)系中,兩個函數(shù)y=x,y=-x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標(biāo).
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當(dāng)正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(夾灶初中 邵林明)(解析版) 題型:解答題

(2006•長春)如圖1,正方形ABCD的頂點A,B的坐標(biāo)分別為(0,10),(8,4),頂點C,D在第一象限.點P從點A出發(fā),沿正方形按逆時針方向運動,同時,點Q從點E(4,0)出發(fā),沿x軸正方向以相同速度運動.當(dāng)點P到達(dá)點C時,P,Q兩點同時停止運動.設(shè)運動時間為t(s).
(1)求正方形ABCD的邊長;
(2)當(dāng)點P在AB邊上運動時,△OPQ的面積S(平方單位)與時間t(s)之間的函數(shù)圖象為拋物線的一部分(如圖2所示),求P,Q兩點的運動速度;
(3)求(2)中面積S(平方單位)與時間t(s)的函數(shù)解析式及面積S取最大值時點P的坐標(biāo);
(4)若點P,Q保持(2)中的速度不變,則點P沿著AB邊運動時,∠OPQ的大小隨著時間t的增大而增大;沿著BC邊運動時,∠OPQ的大小隨著時間t的增大而減。(dāng)點P沿著這兩邊運動時,能使∠OPQ=90°嗎?若能,直接寫出這樣的點P的個數(shù);若不能,直接寫不能.

查看答案和解析>>

同步練習(xí)冊答案