圖1中所示的遮陽傘,傘柄垂直于地面,其示意圖如圖2.當(dāng)傘收緊時,點(diǎn)與點(diǎn)重合(此時AC=PN+CN);當(dāng)傘慢慢撐開時,動點(diǎn)移動;當(dāng)點(diǎn)到過點(diǎn)時,傘張得最開.已知傘在撐開的過程中,總有分米,分米,分米

(1)求長的取值范圍;   (2)當(dāng)時,求的值;

(3)在陽光垂直照射下,傘張得最開,求傘下的陰影(假定為圓面)面積為 (結(jié)果保留).

 

【答案】

(1)0≤≤10. (2)6(3)

【解析】(1)∵

     ∴

的取值范圍為:0≤≤10. ····················· 1分

(2)∵等邊三角形. ∴.

 ∴.

即當(dāng)時,分米. ······················ 2分

 

 (3)傘張得最開時,點(diǎn)與點(diǎn)重合.

     連接.分別交

     ∵,

∴四邊形為菱形,

的平分線,

.

在Rt

.

,的平分線,

.

.

.∴。

.

(平方分米). ·············· 5分

(1)根據(jù)題意,得AC=CN+PN,進(jìn)一步求得AB的長,即可求得AP的取值范圍;

(2)根據(jù)等邊三角形的判定和性質(zhì)即可求解;

(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質(zhì)求得MB的長,再根據(jù)相似三角形的對應(yīng)邊的比相等,求得圓的半徑即可.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

圖1中所示的遮陽傘,傘柄垂直于地面,其示意圖如圖2.當(dāng)傘收緊時,點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時,動點(diǎn)P由A向B移動;當(dāng)點(diǎn)P到過點(diǎn)B時,傘張得最開.已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米
(1)求AP長的取值范圍;
(2)當(dāng)∠CPN=60°時,求AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江西撫州市崇仁四中初三第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

圖1中所示的遮陽傘,傘柄垂直于地面,其示意圖如圖2.當(dāng)傘收緊時,點(diǎn)與點(diǎn)重合(此時AC=PN+CN);當(dāng)傘慢慢撐開時,動點(diǎn)移動;當(dāng)點(diǎn)到過點(diǎn)時,傘張得最開.已知傘在撐開的過程中,總有分米,分米,分米

(1)求長的取值范圍;  (2)當(dāng)時,求的值;
(3)在陽光垂直照射下,傘張得最開,求傘下的陰影(假定為圓面)面積為 (結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

圖1中所示的遮陽傘,傘柄垂直于地面,其示意圖如圖2.當(dāng)傘收緊時,點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時,動點(diǎn)P由A向B移動;當(dāng)點(diǎn)P到過點(diǎn)B時,傘張得最開.已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米
(1)求AP長的取值范圍;
(2)當(dāng)∠CPN=60°時,求AP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期末題 題型:解答題

圖1中所示的遮陽傘,傘柄垂直于地面,其示意圖如圖2:當(dāng)傘收緊時,點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時,動點(diǎn)P由A向B移動;當(dāng)點(diǎn)P到過點(diǎn)B時,傘張得最開。已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米
(1)求AP長的取值范圍;
(2)當(dāng)∠CPN=60時,求AP的值;

查看答案和解析>>

同步練習(xí)冊答案