如圖,△ABC中,AB=AC,D、E、F分別是BC、AC、AB上的點,且BF=CD,BD=CE,則∠EDF=( )
A.90°-∠A
B.90°-∠A
C.180°-∠A
D.45°-∠A
【答案】分析:根據(jù)已知條件可推出BDF≌△CDE,從而可知∠EDC=∠FDB,則∠EDF=∠B.
解答:解:∵AB=AC,
∴∠B=∠C,
又∵BF=CD,BD=CE,
∴△BDF≌△CDE
∴∠EDC=∠DFB
∴∠EDF=∠B=(180°-∠A)÷2=90°-∠A.故選B.
點評:本題考查了全等三角形的判定與性質(zhì)及等腰三角形的性質(zhì)及三角形內(nèi)角和定理;此題能夠發(fā)現(xiàn)全等三角形,再根據(jù)平角的定義和三角形的內(nèi)角和定理發(fā)現(xiàn)∠EDF=∠B.再根據(jù)三角形的內(nèi)角和定理以及等腰三角形的性質(zhì)進行推導(dǎo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案