【題目】教師運(yùn)動(dòng)會(huì)中,甲,乙兩組教師參加“兩人背夾球”往返跑比賽,即:每組兩名教師用背部夾著球跑完規(guī)定的路程,若途中球掉下時(shí)須撿起并回到掉球處繼續(xù)賽跑,用時(shí)少者勝.若距起點(diǎn)的距離用y(米)表示,時(shí)間用x(秒)表示.下圖表示兩組教師比賽過(guò)程中yx的函數(shù)關(guān)系的圖象.根據(jù)圖象,有以下四個(gè)推斷:

①乙組教師獲勝

②乙組教師往返用時(shí)相差2秒

③甲組教師去時(shí)速度為0.5米/秒

④返回時(shí)甲組教師與乙組教師的速度比是2:3

其中合理的是( )

A. ①② B. ①③ C. ②④ D. ①④

【答案】D

【解析】根據(jù)函數(shù)圖象可得乙組用時(shí)少,乙組教師獲勝;由圖象求出返回時(shí)甲組教師與乙組教師的速度比是2:3,所以選①④.

故選D.

“點(diǎn)睛”讀函數(shù)的圖象時(shí)首先要理解橫縱坐標(biāo)表示的含義,理解問(wèn)題敘述的過(guò)程,能夠根據(jù)函數(shù)的圖象準(zhǔn)確的把握住關(guān)鍵信息是解答此題的關(guān)鍵,然后根據(jù)實(shí)際情況采用排除法求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E為正方形ABCD中AD邊上的一個(gè)動(dòng)點(diǎn),AB=16,以BE為邊畫(huà)正方形BEFG,邊EF與邊CD交于點(diǎn)H.

(1)當(dāng)E為邊AD的中點(diǎn)時(shí),求DH的長(zhǎng);
(2)當(dāng)tan∠ABE= 時(shí),連接CF,求CF的長(zhǎng);
(3)連接CE,求△CEF面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,Rt△ABC中,∠ABC=90°,AD平分∠BAC交BC于D.
(1)用尺規(guī)畫(huà)圓O,使圓O過(guò)A、D兩點(diǎn),且圓心O在邊AC上.(保留作圖痕跡,不寫(xiě)作法)
(2)求證:BC與圓O相切;
(3)設(shè)圓O交AB于點(diǎn)E,若AE=2,CD=2BD.求線段BE的長(zhǎng)和弧DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015隨州)甲騎摩托車從A地去B地,乙開(kāi)汽車從B地去A地,同時(shí)出發(fā),勻速行駛,各自到達(dá)終點(diǎn)后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時(shí)間為t(單位:小時(shí)),st之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:

①出發(fā)1小時(shí)時(shí),甲、乙在途中相遇;

②出發(fā)1.5小時(shí)時(shí),乙比甲多行駛了60千米;

③出發(fā)3小時(shí)時(shí),甲、乙同時(shí)到達(dá)終點(diǎn);

④甲的速度是乙速度的一半.

其中,正確結(jié)論的個(gè)數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“好玩三角形”.

(1)請(qǐng)用直尺和圓規(guī)畫(huà)一個(gè)“好玩三角形”;
(2)如圖在Rt△ABC中,∠C=90°,tanA= ,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB﹣BC和AD﹣DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過(guò)的路程為s.
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求 的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”.請(qǐng)直接寫(xiě)出tanβ的取值范圍.
(4)(本小題為選做題)
依據(jù)(3)的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10℃,加熱到100℃,停止加熱,水溫開(kāi)始下降,此時(shí)水溫(℃)與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:45)能喝到不超過(guò)50℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( )

A.7:20
B.7:30
C.7:45
D.7:50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖鋼架中,焊上等長(zhǎng)的13根鋼條來(lái)加固鋼架,若AP1=P1P2=P2P3=…=P13P14=P14A,則∠A的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點(diǎn)同時(shí)出發(fā),相向而行,當(dāng)兩人相遇后,甲繼續(xù)向點(diǎn)B前進(jìn)(甲到達(dá)點(diǎn)B時(shí)停止運(yùn)動(dòng)),乙也立即向B點(diǎn)返回.在整個(gè)運(yùn)動(dòng)過(guò)程中,甲、乙均保持勻速運(yùn)動(dòng).甲、乙兩人之間的距離y(米)與乙運(yùn)動(dòng)的時(shí)間x(秒) 之間的關(guān)系如圖所示.則甲到B點(diǎn)時(shí),乙距B點(diǎn)的距離是________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D是BC邊上一動(dòng)點(diǎn),點(diǎn)E,F(xiàn)分別在AB,AC邊上,連接AD,DE,DF,且∠ADE=∠ADF=60°.

小明通過(guò)觀察、實(shí)驗(yàn),提出猜想:在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,始終有AE=AF,小明把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:

想法1:利用AD是∠EDF的角平分線,構(gòu)造△ADF的全等三角形,然后通過(guò)等腰三角形的相關(guān)知識(shí)獲證.

想法2:利用AD是∠EDF的角平分線,構(gòu)造角平分線的性質(zhì)定理的基本圖形,然后通過(guò)全等三角形的相關(guān)知識(shí)獲證.

想法3:將△ACD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至△ABG,使得AC和AB重合,然后通過(guò)全等三角形的相關(guān)知識(shí)獲證.

請(qǐng)你參考上面的想法,幫助小明證明AE=AF.(一種方法即可)

查看答案和解析>>

同步練習(xí)冊(cè)答案