【題目】對于平面直角坐標(biāo)系xOy中的點P(a,b),若點P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且),則稱點P′為點Pk屬派生點”.例如:P(1,4)屬派生點為P′(1+2×42×1+4),即P′(9,6).

(1)P(-2,3)“2屬派生點”P′的坐標(biāo)為__________.

(2) 若點P“3屬派生點”P′的坐標(biāo)為(62),求點P的坐標(biāo);

(3) 若點Px軸的正半軸上,點P“k屬派生點P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.

【答案】1(4,-1);(2P0,2);(3

【解析】

1)根據(jù)“k屬派生點計算可得;
2)設(shè)點P的坐標(biāo)為(x、y),根據(jù)“k屬派生點定義及P′的坐標(biāo)列出關(guān)于x、y的方程組,解之可得;
3)先得出點P′的坐標(biāo)為(a,ka),由線段PP′的長度為線段OP長度的2倍列出方程,解之可得.

1)點 P(-2,3)“2屬派生點”P′的坐標(biāo)為(-2+3×2,-2×2+3),即(4,-1),
故答案為:(4-1);
2)設(shè)點P的坐標(biāo)為(x、y),
由題意知 ,
解得:
即點P的坐標(biāo)為(0,2),
故答案為:(02);
3)∵點Px軸的正半軸上,
b=0,a0
∴點P的坐標(biāo)為(a,0),點P′的坐標(biāo)為(a,ka
∴線段PP′的長為P′x軸距離為|ka|
Px軸正半軸,線段OP的長為a,
|ka|=2a,即|k|=2,
k=±2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,a、bc分別是∠A、∠B、∠C的對邊,下列條件不能判斷ABC是直角三角形的是(  )

A.A:∠B:∠C345B.abc72425

C.a2b2c2D.A=∠C﹣∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A=90°,AB=6cm,AC=8cm,以斜邊BC上距離B6cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個三角形重疊部分的面積是_______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ABAC10cm,BC8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人以各自的交通工具、相同路線,前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l、l分別表示甲、乙前往目的地所走的路程Skm)隨時間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達(dá);②乙走了8km后遇到甲;③乙出發(fā)6分鐘后追上甲;④甲走了28分鐘時,甲乙相距3km.其中正確的是(  )

A. 只有① B. ①③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③當(dāng)x>1時,yx的增大而減; ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號是(  )

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1:y=kx+b 經(jīng)過點A(﹣,0)和點B(2,5)

(1)求直線l1y軸的交點坐標(biāo);

(2)若點C(a,a+2)與點D在直線l1上,過點D的直線l2x軸正半軸交于點 E,當(dāng)AC=CD=CE 時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°BEAD于點E,且四邊形ABCD的面積為144,則BE________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,,于點D,,DGBC于點G,點EBC的延長線上,且

1)求的度數(shù);

2)寫出圖中所有等腰三角形(不必證明).

查看答案和解析>>

同步練習(xí)冊答案