【題目】一元二次方程指:含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)為2的等式,求一元二次方程解的方法如下:第一步:先將等式左邊關(guān)于x的項(xiàng)進(jìn)行配方, ,第二步:配出的平方式保留在等式左邊,其余部分移到等式右邊,;第三步:根據(jù)平方的逆運(yùn)算,求出或-3;第四步:求出.類比上述求一元二次方程根的方法,(1)解一元二次方程:;
(2)求代數(shù)式的最小值;
【答案】(1);(2)2
【解析】
(1)方程兩邊都除以9變形后,常數(shù)項(xiàng)移到右邊,兩邊都加上一次項(xiàng)系數(shù)一半的平方,左邊化為完全平方式,右邊合并,開方后轉(zhuǎn)化為兩個(gè)一元一次方程來求解;
(2)多項(xiàng)式常數(shù)項(xiàng)7分為3+4,重新結(jié)合后,利用完全平方公式變形,根據(jù)完全平方式大于等于0,即可求出多項(xiàng)式的最小值.
(1)9x2+6x-8=0,
變形得:x2+x=,
配方得:x2+x+=1,即(x+)2=1,
開方得:x+=±1,
解得:x1=,x2=;
(2)9x2+y2+6x-4y+7=9(x2+x+)+(y2-4y+4)+2=9(x+)2+(y-2)2+2,
當(dāng)x=-,y=2時(shí),原式取最小值2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:BOA是一條公路,河流OP恰好經(jīng)過橋O平分∠AOB.
(1)如果要從P處移動到公路上路徑最短,除圖中所示PM外,還可以選擇PN,求作這條路徑,兩條路徑的關(guān)系是______,理由是___________.
(2)河流下游處有一點(diǎn)Q,如果要從P點(diǎn)出發(fā),到達(dá)公路OA上的點(diǎn)C后再前往點(diǎn)Q,請你畫出一條最短路徑,表明點(diǎn)C的位置.
(3)D點(diǎn)在公路OB上,O點(diǎn)到D點(diǎn)的距離與C點(diǎn)相等,作出△CDP,求證:△CDP為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請根據(jù)圖中信息回答下列問題:
(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打九折;乙商場規(guī)定:買一個(gè)暖瓶贈送一個(gè)水杯.若某人想要買4個(gè)暖瓶和15個(gè)水杯,請問選擇哪家商場購買更合算,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題學(xué)習(xí):設(shè)計(jì)概率模擬實(shí)驗(yàn). 在學(xué)習(xí)概率時(shí),老師說:“擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實(shí)驗(yàn)后,正面朝上的概率約是 .”小海、小東、小英分別設(shè)計(jì)了下列三個(gè)模擬實(shí)驗(yàn):
小海找來一個(gè)啤酒瓶蓋(如圖1)進(jìn)行大量重復(fù)拋擲,然后計(jì)算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個(gè)圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個(gè)大小一樣的扇形區(qū)域,并依次標(biāo)上1至8個(gè)數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計(jì)算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個(gè)不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機(jī)同時(shí)摸出兩枚棋子,并大量重復(fù)上述實(shí)驗(yàn),然后計(jì)算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.
根據(jù)以上材料回答問題:
小海、小東、小英三人中,哪一位同學(xué)的實(shí)驗(yàn)設(shè)計(jì)比較合理,并簡要說出其他兩位同學(xué)實(shí)驗(yàn)的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 平面內(nèi),沒有公共點(diǎn)的兩條線段平行
B. 平面內(nèi),沒有公共點(diǎn)的兩條射線平行
C. 沒有公共點(diǎn)的兩條直線互相平行
D. 互相平行的兩條直線沒有公共點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時(shí),它的周長
最?最小值是多少?
【數(shù)學(xué)模型】
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)表達(dá)式為y=2(x+ )(x>0).
【探索研究】
小彬借鑒以前研究函數(shù)的經(jīng)驗(yàn),先探索函數(shù)y=x+ 的圖象性質(zhì).
(1)結(jié)合問題情境,函數(shù)y=x+ 的自變量x的取值范圍是x>0,如表是y與x的幾組對應(yīng)值.
x | … | 1 | 2 | 3 | m | … | |||
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①寫出m的值;
②畫出該函數(shù)圖象,結(jié)合圖象,得出當(dāng)x=時(shí),y有最小值,y最小=;
(2)【解決問題】
直接寫出“問題情境”中問題的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、AE分別是△ABC的高和角平分線,∠B=30°,∠C=70°,分別求:
(1)∠BAC的度數(shù);
(2)∠AED的度數(shù);
(3)∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R.對于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足r≤d≤R的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn). 在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣ ,﹣1),C( ,﹣1).
(1)已知點(diǎn)D(2,2),E( ,1),F(xiàn)(﹣ ,﹣1).在D,E,F(xiàn)中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是;
(2)如圖1,過點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°. ①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫出答案,不需過程)
(3)如圖2,點(diǎn)Q為直線y=﹣1上一動點(diǎn),⊙Q的半徑為 .當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動,運(yùn)動時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請直接寫出所有符合題意的t的值;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com