如圖所示,在△ABC中,已知AB=AC,∠A=36°,BC=2,BD是△ABC的角平分線,則AD=________.

2
分析:根據(jù)等腰三角形的性質(zhì),先證∠B=∠C=72°,再由角平分線的定義可證∠ABD=∠CBD=36°,即可求∠BDC=72°,即證BD=BC=AD=2.
解答:∵AB=AC,∠A=36°,
∴∠B=∠C=72°,
∵BD是△ABC的角平分線,
∴∠ABD=∠CBD=36°,
∴∠BDC=180°-36°-72°=72°=∠C,
∴BD=BC=AD=2.
故填2.
點評:本題考查了等腰三角形的判定與性質(zhì);由已知條件結(jié)合性質(zhì)得到BD=BC=AD是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2

查看答案和解析>>

同步練習冊答案