【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費(fèi),年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔,某戶應(yīng)交天然氣費(fèi)(元)與年用天然氣量(立方米)的關(guān)系如圖所示,觀察圖像并回答問題:

1)求之間的函數(shù)解析式并寫出自變量的取值范圍;

2)嘉琪家2018年天然氣費(fèi)為1029元,求嘉琪家2018年使用天然氣量是否超出310立方米?

【答案】1;(2)超出310立方米

【解析】

1)根據(jù)函數(shù)圖像得到坐標(biāo),再分段求解函數(shù)解析式即可;

2)根據(jù)2018年天然氣費(fèi)為1029元>230元即可判斷.

1)當(dāng)時,函數(shù)的圖像經(jīng)過原點

設(shè)函數(shù)解析式為k0

將點代入

解得

所以

當(dāng)時函數(shù)圖像經(jīng)過點

設(shè)函數(shù)解析式為

將兩點代入

解得

綜上所述,函數(shù)解析式為:;

2

所以嘉琪家2018年使用天然氣量超出310立方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一個拋物線經(jīng)過A0,1),B1,3),C(﹣11)三點.

1)求這個拋物線的表達(dá)式及其頂點D的坐標(biāo);

2)聯(lián)結(jié)AB、BC、CA,求tanABC的值;

3)如果點E在該拋物線的對稱軸上,且以點A、B、C、E為頂點的四邊形是梯形,直接寫出點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)與一次函數(shù)ykx+1)(其中x為自變量,k為常數(shù))在同一坐標(biāo)系中的圖象可能是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角EAC為30°,測得建筑物CD的底部D點的俯角EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在正六邊形中,有兩點同時、同速從中點出發(fā),P沿方向運(yùn)動,Q點沿方向指向運(yùn)動,10秒后,兩點與多邊形中心連線及多邊形(延長線)所圍成圖形的面積如圖(陰影部分的面積)有兩部分為,則之間的數(shù)量關(guān)系是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的頂點A,B分別在y軸、x軸上,OA2,OB1,斜邊ACx軸.若反比例函數(shù)yk0,x0)的圖象經(jīng)過AC的中點D,則k的值為(

A.4B.5C.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】社會主義核心價值觀是社會主義核心價值體系最核心的體現(xiàn),踐行社會主義和興價值觀也是每一名中學(xué)生的責(zé)任.某校開展了社會主義核心價值觀演講比賽,學(xué)習(xí)在演講比賽活動中,對全校學(xué)生用AB、C、D四個等級進(jìn)行評分,現(xiàn)從中隨機(jī)抽取若干名學(xué)生進(jìn)行調(diào)查,繪制出了如下兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中的信息回答下列問題:

1)共抽取了多少名學(xué)生進(jìn)行調(diào)查?

2)將圖甲中的條形統(tǒng)計圖補(bǔ)充完整;

3)求出圖乙中B等級所占圓心角的度數(shù);

4)某班有男、女各2名學(xué)生報名參加演講比賽,若該班班主任從中選2名學(xué)生最終參加校級比賽,試用列表或畫樹狀圖的方法,求恰好選中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,的直徑,點上的點,連結(jié)并延長至點,使,連結(jié)于點

1)求證:點是劣弧的中點;

2)如圖②,連結(jié),若,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB3米,臺階AC的坡度為1(ABBC=1),且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度

查看答案和解析>>

同步練習(xí)冊答案