【題目】如圖,已知AB∥DE,∠ABC=65°,∠CDE=138°,則∠C的值為(
A.21°
B.23°
C.25°
D.30°

【答案】B
【解析】解:如圖,反向延長DE交BC于M, ∵AB∥DE,
∴∠BMD=∠ABC=65°,
∴∠CMD=180°﹣∠BMD=115°,
又∵∠CDE=∠CMD+∠C,
∴∠BCD=∠CDE﹣∠CMD=138°﹣115°=23°.
故選:B.

【考點精析】認真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補),還要掌握三角形的外角(三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)的相關(guān)知識才是答題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦AD∥OC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,求AD:OC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12 m.設(shè)AD的長為x m,DC的長為y m.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中, A=80 ABCACD的平分線交于點A1,得A1; A1BCA1CD的平分線相交于點A2,得A2;……; A7BCA7CD的平分線相交于點A8,得A8,則A8的度數(shù)為()

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,原有一大長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若原來該大長方形的周長是120,則分割后不用測量就能知道周長的圖形標(biāo)號為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用兩種方法證明三角形的外角和等于360°”.

已知:如圖,BAECBF,ACDABC的三個外角.

求證:∠BAECBFACD=360°.

證法1:________________________________________________________________,

∴∠BAE1+CBF2+ACD3=180°×3=540°,

∴∠BAECBFACD=540°-(1+2+3).

______________,

∴∠BAECBFACD=540°-180°=360°.

請把證法1補充完整,并用不同的方法完成證法2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為a,動點P從點A出發(fā),沿折線A→B→D→C→A的路徑運動,回到點A時運動停止.設(shè)點P運動的路程長為x,AP長為y,則y關(guān)于x的函數(shù)圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將連續(xù)正整數(shù)按以下規(guī)律排列,則位于第7行第7列的數(shù)x是

查看答案和解析>>

同步練習(xí)冊答案