若+=0,則a-b= .
1
【解析】
試題分析: 根據(jù)非負(fù)數(shù)的性質(zhì)列式求出a、b的值,然后代入代數(shù)式進(jìn)行計(jì)算即可求解.
考點(diǎn): 非負(fù)數(shù)的性質(zhì);絕對(duì)值;平方根
點(diǎn)評(píng): 此類試題屬于基本難度的基礎(chǔ)性試題,此類試題藥學(xué)會(huì)很好的分析;本題考查了絕對(duì)值非負(fù)數(shù),算術(shù)平方根非負(fù)數(shù)的性質(zhì),根據(jù)幾個(gè)非負(fù)數(shù)的和等于0,則每一個(gè)算式都等于0列式是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:雙色筆記八年級(jí)數(shù)學(xué)上(北京師大版) 題型:022
在Rt△ABC中,∠C=,
(1)若a=8,b=6,則c=________;
(2)若a=2,c=3,則b=________;
(3)若c=61,b=60,則a=________;
(4)若a∶b=3∶4,c=10,則a=________,b=________;
(5)若∠A=,a=2,則b=________;
(6)若∠B=,c=4,則a=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請(qǐng)你猜想:當(dāng)∠AnMnNn= °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵_(dá)_______________________________
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請(qǐng)你猜想:當(dāng)∠AnMnNn= °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2015屆山東臨沂臨沭縣第二學(xué)期七年級(jí)期中數(shù)學(xué)試卷(解析版) 題型:解答題
有一塊直角三角板XYZ放置在△ABC上,三角板XYZ的兩條直角邊XY、XZ恰好分別經(jīng)過點(diǎn)B、C!鰽BC中,
(1)如圖1,若∠A=30°.則∠ABC+∠ACB= 度,∠XBC+∠XCB= 度;
(2)如圖2,改變直角三角板XYZ的位置,使三角板XYZ的兩條直角邊XY、XZ仍然分別經(jīng)過點(diǎn)B、C,若∠A=x°,則∠ABX+∠ACX= 度;(用x 的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題
數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵_(dá)_______________________________
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請(qǐng)你猜想:當(dāng)∠AnMnNn= °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com