已知直線l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.
考點(diǎn):直線與圓的位置關(guān)系,圓周角定理
專(zhuān)題:
分析:(1)連接OC,易得OC∥AD,根據(jù)平行線的性質(zhì)就可以得到∠DAC=∠ACO,再根據(jù)OA=OC得到∠ACO=∠CAO,就可以證出結(jié)論;
(2)如圖②,連接BF,由AB是⊙O的直徑,根據(jù)直徑所對(duì)的圓周角是直角,可得∠AFB=90°,由三角形外角的性質(zhì),可求得∠AEF的度數(shù),又由圓的內(nèi)接四邊形的性質(zhì),繼而證得結(jié)論.
解答:解:(1)連接OC,
∵直線l與⊙O相切于點(diǎn)C,
∴OC⊥CD;
又∵AD⊥CD,
∴AD∥OC,
∴∠DAC=∠ACO;
又∵OA=OC,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;

(2)如圖②,連接BF,
∵AB是⊙O的直徑,
∴∠AFB=90°,
∴∠BAF=90°-∠B,
∴∠AEF=∠ADE+∠DAE,
在⊙O中,四邊形ABFE是圓的內(nèi)接四邊形,
∴∠AEF+∠B=180°,
∴∠BAF=∠DAE.
點(diǎn)評(píng):此題考查了切線的性質(zhì)、圓周角定理以及圓的內(nèi)接四邊形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是某地的灌溉系統(tǒng),一個(gè)漂浮物A流到B處的概率為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

單項(xiàng)式-
3xy2
4
的系數(shù)是( 。
A、3
B、-3
C、-
3
4
D、
3
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2,-2)和點(diǎn)B(-4,n)在拋物線y=ax2(a≠0)上.
(1)求a的值及點(diǎn)B的坐標(biāo);
(2)點(diǎn)P在y軸上,且滿(mǎn)足△ABP是以AB為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)平移拋物線y=ax2(a≠0),記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′.點(diǎn)M(2,0)在x軸上,當(dāng)拋物線向右平移到某個(gè)位置時(shí),A′M+MB′最短,求此時(shí)拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:2sin60°+3tan30°-2tan60°-cos45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的一元二次方程x2-(m2+2)x+m2+1=0(m≠0).
(1)證明:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩個(gè)實(shí)數(shù)根分別為x1,x2,(其中x1<x2).若y是關(guān)于m的函數(shù),且y=x2-2x1-1,求這個(gè)函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2+(b-1)x+c經(jīng)過(guò)點(diǎn)P(-1,5),Q(1,-1),求b與c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,點(diǎn)D,E分別在AB,AC邊上,DE∥BC,若AD=2,DB=3,DE=1,則BC的長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,BA1和CA1分別是△ABC的內(nèi)角平分線和外角平分線,BA2是∠A1BD的角平分線CA2是∠A1CD的角平分線,BA3是A2BD∠的角平分線,CA3是∠A2CD的角平分線,若∠A1=α,則∠A2013為( 。
A、
α
2013
B、
α
22013
C、
α
2012
D、
α
22012

查看答案和解析>>

同步練習(xí)冊(cè)答案