精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,∠BAC90°,點FBC邊上,過A,B,F三點的⊙OAC于另一點D,作直徑AE,連結EF并延長交AC于點G,連結BEBD,四邊形BDGE是平行四邊形.

1)求證:ABBF

2)當FBC的中點,且AC3時,求⊙O的直徑長.

【答案】1)證明見解析;(22

【解析】

1)連接AF,根據圓周角定理得到AFEG,根據平行四邊形的性質得到BDEG,推出BD垂直平分AF,于是得到AB=BF;

2)根據直角三角形的性質得到BF=BC,求得AB=BC,得到∠C=30°,求得∠ABC=60°AB=,AC=,于是得到結論.

解:(1)連接AF,

AE是⊙O的直徑,

AFEG,

∵四邊形BDGE是平行四邊形,

BDEG,

BDAF,

∵∠BAC90°,

BD是⊙O的直徑,

BD垂直平分AF,

ABBF;

2)∵當FBC的中點,

BFBC

ABBF,

ABBC

∵∠BAC90°,

∴∠C30°,

∴∠ABC60°,ABAC

ABBF,

∴∠ABD30°,

BD2,

∴⊙O的直徑長為2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,△ABC 中,AB=AC, BAC 60°,將線段 AB 繞點 A逆時針旋轉 60°得到點 D, E 與點 D 關于直線 BC 對稱,連接 CD,CEDE

1)依題意補全圖形;

2)判斷△CDE 的形狀,并證明;

3)請問在直線CE上是否存在點 P,使得 PA - PB =CD 成立?若存在,請用文字描述出點 P 的準確位置,并畫圖證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】 實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期半個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:

1)本次調查中C類女生有______名,D類男生有______名;將上面的條形統(tǒng)計圖補充完整;

2)計算扇形統(tǒng)計圖中D所占的圓心角是______;

3)為了共同進步,張老師想從被調查的A類和D類學生中分別選取一位同學進行一幫一互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,連接DE.過點AAFDE,垂足為F,⊙O經過點C、D、F,與AD相交于點G

(1)求證:△AFG∽△DFC;

(2)若正方形ABCD的邊長為4,AE=1,求O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,二次函數的圖象交軸于兩點,交軸于點,點的坐標為,頂點的坐標為

(1)求二次函數的解析式和直線的解析式;

(2)點是直線上的一個動點,過點軸的垂線,交拋物線于點,當點在第一象限時,求線段長度的最大值;

(3)在拋物線上是否存在異于的點,使邊上的高為,若存在求出點的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△BOD都是等腰直角三角形,過點BABOB交反比例函數y(x0)于點A,過點AACBD于點C,若SBODSABC=3,則k的值為____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB為弓形AB的弦,AB2,弓形所在圓⊙O的半徑為2,點P為弧AB上動點,點I為△PAB的內心,當點P從點A向點B運動時,點I移動的路徑長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=x+4,

1)用配方法確定它的頂點坐標、對稱軸;

2x取何值時,yx增大而減小?

3x取何值時,拋物線在x軸上方?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy(如圖)中,拋物線yax2+bx+2經過點A4,0)、B2,2),與y軸的交點為C

1)試求這個拋物線的表達式;

2)如果這個拋物線的頂點為M,求AMC的面積;

3)如果這個拋物線的對稱軸與直線BC交于點D,點E在線段AB上,且∠DOE45°,求點E的坐標.

查看答案和解析>>

同步練習冊答案