已知拋物線y=x2和直線y=(m2-1)x+m2
(1)當(dāng)m為何實(shí)數(shù)時,拋物線與直線有兩個交點(diǎn);
(2)設(shè)坐標(biāo)原點(diǎn)為O,拋物線與直線的交點(diǎn)從左至右分別為A、B、當(dāng)直線與拋物線兩點(diǎn)的橫坐標(biāo)之差為3時,求△AOB中的OB邊上的高.
分析:(1)聯(lián)立拋物線和直線的解析式,可得出一個關(guān)于x的一元二次方程,如果拋物線與直線有兩個交點(diǎn),那么方程的△>0,由此可得出m的值.
(2)本題要先根據(jù)(1)兩函數(shù)聯(lián)立得出的方程求出A,B的橫坐標(biāo),然后根據(jù)兩點(diǎn)的橫坐標(biāo)差為3,求出m的值,即可求出A,B兩點(diǎn)的坐標(biāo),然后根據(jù)A,B的坐標(biāo)來求△AOB中OB邊上的高.
解答:解:(1)由
y=x2
y=(m2-1)x+m2

有:x2-(m2-1)x-m2=0…①
△=[-(m2-1)]2-4(-m2)=(m2+1)2>0
∴無論m取任何實(shí)數(shù),方程①總有兩個不同的實(shí)數(shù)根.
即無論m取任何實(shí)數(shù),直線與拋物線總有兩個不同的交點(diǎn).

(2)解方程①,有x1=-1,x2=m2;
令|m2-(-1)|=3,有m2+1=3,
∴m=±
2
;
∴當(dāng)m=±
2
時,直線與拋物線兩交點(diǎn)的橫坐標(biāo)之差為3.
此時y=x+2,A(-1,1),B(2,4).
由勾股定理,得
|OA|=
2
,|OB|=
20

過B作x軸的垂線,交x軸于點(diǎn)M,過A作BM的垂線.交BM于N.
則|AN|=3,|BN|=3;
∴|AB|=
18

∵|OA|2+|AB|2=|OB|2
∴由勾股定理逆定理,知△AOB為直角三角形,且∠BAO=90°,
設(shè)OB邊上的高為h,則有
1
2
|AB|•|OA|=
1
2
|OB|•h.
18
2
=
20
•h
∴h=
3
5
5
點(diǎn)評:本題主要考查了函數(shù)圖象交點(diǎn)的求法、一元二次方程根與系數(shù)的關(guān)系、勾股定理等知識點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鎮(zhèn)江二模)在平面直角坐標(biāo)系中,已知拋物線y=-x2+bx+c與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為E.
(1)求拋物線解析式及頂點(diǎn)E的坐標(biāo);
(2)如圖,過點(diǎn)E作BC平行線,交x軸于點(diǎn)F,在不添加線和字母情況下,圖中面積相等的三角形有:
△BCF與△BCE
△BCF與△BCE
;
(3)將拋物線向下平移,與x軸交于點(diǎn)M、N,與y軸的正半軸交于點(diǎn)P,頂點(diǎn)為Q.在四邊形MNQP中滿足S△NPQ=S△MNP,求此時直線PN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線y=x2和直線y=(m2-1)x+m2
(1)當(dāng)m為何實(shí)數(shù)時,拋物線與直線有兩個交點(diǎn);
(2)設(shè)坐標(biāo)原點(diǎn)為O,拋物線與直線的交點(diǎn)從左至右分別為A、B、當(dāng)直線與拋物線兩點(diǎn)的橫坐標(biāo)之差為3時,求△AOB中的OB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•四川)已知拋物線y=x2和直線y=(m2-1)x+m2
(1)當(dāng)m為何實(shí)數(shù)時,拋物線與直線有兩個交點(diǎn);
(2)設(shè)坐標(biāo)原點(diǎn)為O,拋物線與直線的交點(diǎn)從左至右分別為A、B、當(dāng)直線與拋物線兩點(diǎn)的橫坐標(biāo)之差為3時,求△AOB中的OB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年四川省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•四川)已知拋物線y=x2和直線y=(m2-1)x+m2
(1)當(dāng)m為何實(shí)數(shù)時,拋物線與直線有兩個交點(diǎn);
(2)設(shè)坐標(biāo)原點(diǎn)為O,拋物線與直線的交點(diǎn)從左至右分別為A、B、當(dāng)直線與拋物線兩點(diǎn)的橫坐標(biāo)之差為3時,求△AOB中的OB邊上的高.

查看答案和解析>>

同步練習(xí)冊答案