如圖,⊙P與y軸相切,圓心為P(-2,1),直線MN過點M(2,3),N(4,1).
(1)求⊙P在x軸上截得的線段長度;
(2)直接寫出圓心P到直線MN的距離.

解:(1)連接PA,由圓P與y軸相切,得到圓P半徑為2,即PA=2,PC=1,
∵PC⊥AB,∴C為AB的中點,
在Rt△APC中,根據(jù)勾股定理得:AC==
則圓P在x軸上截得的線段長度AB=2AC=2;
(2)連接PD,由網(wǎng)格得到△PDN為等腰直角三角形,
且PD=ND=3
則圓心P到直線MN的距離為3
分析:(1)由圓P與y軸相切,根據(jù)P坐標得出圓的半徑為2,PC=1,再有PC垂直于AB,利用垂徑定理得到C為AB的中點,在直角三角形APC中,利用勾股定理求出AC的長,即可求出AB的長;
(2)連接PD,由網(wǎng)格得到三角形PDN為等腰直角三角形,PD即為點P到MN的距離,利用勾股定理求出即可.
點評:此題考查了切線的性質,垂徑定理,以及勾股定理,屬于網(wǎng)格型試題,是近幾年中考的熱點試題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖,⊙P與x軸相切于坐標原點O,點A(0,2)是⊙P與y軸的交點,點B(-2
2
,0)在x精英家教網(wǎng)軸上.連接BP交⊙P于點C,連接AC并延長交x軸于點D.
(1)求線段BC的長;
(2)求直線AC的關系式;
(3)當點B在x軸上移動時,是否存在點B,使△BOP相似于△AOD?若存在,求出符合條件的點B的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙M與x軸相切于原點,平行于y軸的直線交圓于P、Q兩點,P點在Q點的下方.若P點的坐標是(2,1),求圓心M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙M與x軸相切于原點,平行于y軸的直線交⊙M于P、Q兩點,P點在Q點的下方.若點P的坐標是(2,1),則圓心M的坐標是
(0,2.5)
(0,2.5)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•倉山區(qū)模擬)如圖,⊙M與x軸相切與原點,平行于y軸的直線交⊙M于P、Q兩點,P點在Q點的下方,若點P的坐標是(
2
,2-
2
)
,PQ=2
2

(1)求⊙M的半徑R;
(2)求圖中陰影部分的面積(精確到0.1);
(3)已知直線AB對應的一次函數(shù)y=x+2+2
2
,求證:AB是⊙M的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黔西南州模擬)如圖,⊙P與x軸相切于坐標原點O,點A(0,2)是⊙P與y軸的交點,點B(-2
2
,0)在x軸上,連接BP交⊙P于點C,連接AC并延長交x軸于點D.
(1)求BC的長;
(2)寫出經(jīng)過點A、點(1,0)、點(-1,6)的拋物線的解析式;
(3)求直線AC的函數(shù)解析式;
(4)點B在x軸上移動時,是否存在一點B′,使B′OP相似于△AOD?若存在,求出符合條件的點B'的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案