【題目】如圖,已知中,,點(diǎn)以每秒1個(gè)單位的速度從運(yùn)動(dòng),同時(shí)點(diǎn)以每秒2個(gè)單位的速度從方向運(yùn)動(dòng),到達(dá)點(diǎn)后,點(diǎn)也停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.

(1)點(diǎn)停止運(yùn)動(dòng)時(shí),的長;

(2) 兩點(diǎn)在運(yùn)動(dòng)過程中,點(diǎn)點(diǎn)關(guān)于直線的對稱點(diǎn),是否存在時(shí)間,使四邊形為菱形?若存在,求出此時(shí)的值;若不存在,請說明理由.

(3) 兩點(diǎn)在運(yùn)動(dòng)過程中,求使相似的時(shí)間的值.

【答案】(1)(2)(3)

【解析】

1)求出點(diǎn)Q的從BA的運(yùn)動(dòng)時(shí)間,再求出AP的長,利用勾股定理即可解決問題.

2)如圖1中,當(dāng)四邊形PQCE是菱形時(shí),連接QEACK,作QDBCD.根據(jù)DQ=CK,構(gòu)建方程即可解決問題.

3)分兩種情形:如圖3-1中,當(dāng)∠APQ=90°時(shí),如圖3-2中,當(dāng)∠AQP=90°時(shí),分別構(gòu)建方程即可解決問題.

1)在RtABC中,∵∠C=90°,AC=6BC=8,

AB==10,

點(diǎn)Q運(yùn)動(dòng)到點(diǎn)A時(shí),t==5,

AP=5,PC=1

RtPBC中,PB=

2)如圖1中,當(dāng)四邊形PQCE是菱形時(shí),連接QEACK,作QDBCD

∵四邊形PQCE是菱形,

PCEQ,PK=KC

∵∠QKC=QDC=DCK=90°,

∴四邊形QDCK是矩形,

DQ=CK

,

解得t=

t=s時(shí),四邊形PQCE是菱形.

3)如圖2中,當(dāng)∠APQ=90°時(shí),

∵∠APQ=C=90°

PQBC,

,

,

如圖3中,當(dāng)∠AQP=90°時(shí),

∵△AQPACB

,

,

綜上所述,s時(shí),APQ是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AEDC的交點(diǎn)為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

有這樣一個(gè)問題:關(guān)于x 的一元二次方程a x2+bx+c=0(a0)有兩個(gè)不相等的且非零的實(shí)數(shù)根.探究a,b,c滿足的條件.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),認(rèn)為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:

①設(shè)一元二次方程ax2+bx+c=0(a0)對應(yīng)的二次函數(shù)為y=ax2+bx+c(a0);

②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,b,c滿足的條件,列表如下:

方程根的幾何意義:請將(2)補(bǔ)充完整

方程兩根的情況

對應(yīng)的二次函數(shù)的大致圖象

a,b,c滿足的條件

方程有兩個(gè)

不相等的負(fù)實(shí)根

_____

方程有兩個(gè)

不相等的正實(shí)根

_____

_____

(1)參考小明的做法,把上述表格補(bǔ)充完整;

(2)若一元二次方程mx2﹣(2m+3)x﹣4m=0有一個(gè)負(fù)實(shí)根,一個(gè)正實(shí)根,且負(fù)實(shí)根大于﹣1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A90°,點(diǎn)PQ分別是ABAC上的動(dòng)點(diǎn),且滿足BPAQ,DBC的中點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到___時(shí),四邊形APDQ是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】廣州火車南站廣場計(jì)劃在廣場內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.

(1)A,B兩種花木的數(shù)量分別是多少棵?

(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將連續(xù)的奇數(shù)1,3,5,7…按圖1中的方式排成一個(gè)數(shù)表,用一個(gè)十字框框住5個(gè)數(shù),這樣框出的任意5個(gè)數(shù)(如圖2)分別用a,b,c,d,x表示.

(1)若x=17,則a+b+c+d=   

(2)移動(dòng)十字框,用x表示a+b+c+d=   

(3)設(shè)M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20km的環(huán)湖越野賽中,甲乙兩選手的行程y(單位:km)隨時(shí)間x(單位:h)變化的圖象如右上圖所示,根據(jù)圖中提供的信息,下列說法中錯(cuò)誤的有(

①出發(fā)后1小時(shí),兩人行程均為10km; ②出發(fā)后1.5小時(shí),甲的行程比乙多2km;

③兩人相遇前,甲的速度小于乙的速度; ④甲比乙先到達(dá)終點(diǎn).

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荔枝上市后,某水果店的老板用500元購進(jìn)第一批荔枝,銷售完后,又用800元購進(jìn)第二批荔枝,所購件數(shù)是第一批購進(jìn)件數(shù)的2,但每件進(jìn)價(jià)比第一批進(jìn)價(jià)少5元.

(1)求第一批荔枝每件的進(jìn)價(jià);

(2)若第二批荔枝以30/件的價(jià)格銷售,在售出所購件數(shù)的,為了盡快售完,決定降價(jià)銷售,要使第二批荔枝的銷售利潤不少于300,剩余的荔枝每件售價(jià)至少多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長;

(2)如果把CAE的周長記作CCAE,BAF的周長記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長.

查看答案和解析>>

同步練習(xí)冊答案