【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

【答案】(1);(2)y=(0<x<2),(3).

【解析】試題分析:(1)根據(jù)等腰直角三角形的性質(zhì),求得∠DAC=∠ACD=45°,進(jìn)而根據(jù)兩角對(duì)應(yīng)相等的兩三角形相似,可得△CEF∽△CAE,然后根據(jù)相似三角形的性質(zhì)和勾股定理可求解;

(2)根據(jù)相似三角形的判定與性質(zhì),由三角形的周長(zhǎng)比可求解;

(3)由(2)中的相似三角形的對(duì)應(yīng)邊成比例,可求出AB的關(guān)系,然后可由∠ABE的正切值求解.

試題解析:(1)∵AD=CD.

∴∠DAC=∠ACD=45°,

∵∠CEB=45°,

∴∠DAC=∠CEB,

∵∠ECA=∠ECA,

∴△CEF∽△CAE,

,

Rt△CDE中,根據(jù)勾股定理得,CE=

∵CA=2,

∴CF=;

(2)∵∠CFE=∠BFA,∠CEB=∠CAB,

∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,

∵∠ABF=180°﹣∠CAB﹣∠AFB,

∴∠ECA=∠ABF,

∵∠CAE=∠ABF=45°,

∴△CEA∽△BFA,

∴y====(0<x<2),

(3)由(2)知,△CEA∽△BFA,

,

∴AB=x+2,

∵∠ABE的正切值是,

∴tan∠ABE===,

∴x=,

∴AB=x+2=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老漢為了與顧客簽訂購銷合同,對(duì)自己魚塘中魚的總質(zhì)量進(jìn)行了估計(jì),第一次撈出100條,稱得質(zhì)量為184千克.并將每條魚做上記號(hào)后放入水中,當(dāng)它們完全混合于魚群后,又撈出200條,稱得質(zhì)量為416千克,且?guī)в杏浱?hào)的魚有20條,王老漢的魚塘中估計(jì)有魚多少條魚?總質(zhì)量為多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,DAABDE平分∠ADC,CE平分∠BCD,且∠1+2=90°.試猜想BCAB有怎樣的位置關(guān)系,并說明其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生小明、小華為了解本校八年級(jí)學(xué)生每周上網(wǎng)的時(shí)間,各自進(jìn)行了抽樣調(diào)查.小明調(diào)查了八年級(jí)信息技術(shù)興趣小組中40名學(xué)生每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為2.5h;小華從全體320名八年級(jí)學(xué)生名單中隨機(jī)抽取了40名學(xué)生,調(diào)查了他們每周上網(wǎng)的時(shí)間,算得這些學(xué)生平均每周上網(wǎng)時(shí)間為1.2h.小明與小華整理各自樣本數(shù)據(jù),如表所示.

時(shí)間段(h/周)

小明抽樣人數(shù)

小華抽樣人數(shù)

01

6

22

12

10

10

23

16

6

34

8

2

(每組可含最低值,不含最高值)

請(qǐng)根據(jù)上述信息,回答下列問題:

(1)你認(rèn)為哪位學(xué)生抽取的樣本具有代表性?_____

估計(jì)該校全體八年級(jí)學(xué)生平均每周上網(wǎng)時(shí)間為_____h;

(2)在具有代表性的樣本中,中位數(shù)所在的時(shí)間段是_____h/周;

(3)專家建議每周上網(wǎng)2h以上(含2h)的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,根據(jù)具有代表性的樣本估計(jì),該校全體八年級(jí)學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.

(1)寫出你所知道的四邊形中是勾股四邊形的兩種圖形的名稱_____,_____

(2)如圖,將△ABC繞頂點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)60°后得到△DBE,連接AD、DC,若∠DCB=30°,試證明;DC2+BC2=AC2.(即四邊形ABCD是勾股四邊形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩輛汽車分別從A,B兩地同時(shí)出發(fā),沿同一條公路相向而行,乙車出發(fā)2h后休息,與甲車相遇后,繼續(xù)行駛.設(shè)甲、乙兩車與B地的路程分別為ykm),ykm),甲車行駛的時(shí)間為xh),yyx之間的函數(shù)圖象如圖所示,結(jié)合圖象解答下列問題:

1)乙車休息了 _________ h

2)求乙車與甲車相遇后yx的函數(shù)解析式,并寫出自變量x的取值范圍;.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點(diǎn)在BC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過點(diǎn)DBC的平行線,與AB的延長(zhǎng)線相交于點(diǎn)P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA;

3)當(dāng)AB=6,AC=8時(shí),求線段PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生閱讀能力,我區(qū)某校倡議八年級(jí)學(xué)生利用雙休日加強(qiáng)課外閱讀,為了解同學(xué)們閱讀的情況,學(xué)校隨機(jī)抽查了部分同學(xué)周末閱讀時(shí)間,并且得到數(shù)據(jù)繪制了不完整的統(tǒng)計(jì)圖,根據(jù)圖中信息回答下列問題:

1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;被調(diào)查的學(xué)生周末閱讀時(shí)間眾數(shù)是多少小時(shí),中位數(shù)是多少小時(shí);

2)計(jì)算被調(diào)查學(xué)生閱讀時(shí)間的平均數(shù);

3)該校八年級(jí)共有500人,試估計(jì)周末閱讀時(shí)間不低于1.5小時(shí)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某蘋果生產(chǎn)基地,用30名工人進(jìn)行采摘或加工蘋果 ,每名工人只能做其中一項(xiàng)工作.蘋果的銷售方式有兩種:一種是可以直接出售;另一種是可以將采摘的蘋果加工成罐頭出售.直接出售每噸獲利4 000元;加工成罐頭出售每噸獲利10 000元.采摘的工人每人可采摘蘋果0.4噸;加工罐頭的工人每人可加工0.3噸.設(shè)有x名工人進(jìn)行蘋果采摘,全部售出后,總利潤(rùn)為y元.

(1)yx的函數(shù)關(guān)系式;

(2)如何分配工人才能獲利最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案