如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,D是AB延長線上一點(diǎn),連接DC,且AC=DC,BC=BD.
(1)求證:DC是⊙O的切線;
(2)作CD的平行線AE交⊙O于點(diǎn)E,已知DC=10,求圓心O到AE的距離.
(1)證明:連接OC,
∵AC=DC,BC=BD,
∴∠CAD=∠D,∠D=∠BCD,
∴∠CAD=∠D=∠BCD,
∴∠ABC=∠D+∠BCD=2∠CAD,
設(shè)∠CAD=x°,則∠D=∠BCD=x°,∠ABC=2x°,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴x+2x=90,
x=30,
即∠CAD=∠D=30°,∠CBO=60°,
∵OC=OB,
∴△BCO是等邊三角形,
∴∠COB=60°,
∴∠OCD=180°﹣30°﹣60°=90°,
即OC⊥CD,
∵OC為半徑,
∴DC是⊙O的切線;
(2)解:過O作OF⊥AE于F,
∵在Rt△OCD中,∠OCD=90°,∠D=30°,CD=10,
∴OC=CD×tan30°=10,
OD=2OC=20,
∴OA=OC=10,
∵AE∥CD,
∴∠FAO=∠D=30°,
∴OF=AO×sin30°=10×=5,
即圓心O到AE的距離是5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直角坐標(biāo)系中的五角星關(guān)于y軸對稱的圖形在( 。
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某校為了了解學(xué)生大課間活動(dòng)的跳繩情況,隨機(jī)抽取了50名學(xué)生每分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計(jì),把統(tǒng)計(jì)結(jié)果繪制成如表和直方圖.
次數(shù) | 70<x<90 | 90<x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人數(shù) | 8 | 23 | 16 | 2 | 1 |
根據(jù)所給信息,回答下列問題:
(1)本次調(diào)查的樣本容量是 ;
(2)本次調(diào)查中每分鐘跳繩次數(shù)達(dá)到110次以上(含110次)的共有的共有 人;
(3)根據(jù)上表的數(shù)據(jù)補(bǔ)全直方圖;
(4)如果跳繩次數(shù)達(dá)到130次以上的3人中有2名女生和一名男生,學(xué)校從這3人中抽取2名學(xué)生進(jìn)行經(jīng)驗(yàn)交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
PM2.5是指大氣中直徑小于或等于0.000 002 5米的顆粒物,將0.000 002 5用科學(xué)記數(shù)法表示為( 。
| A. | 0.25×10﹣5 | B. | 2.5×10﹣5 | C. | 2.5×10﹣6 | D. | 2.5×10﹣7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙O中,F(xiàn)G、AC是直徑,AB是弦,F(xiàn)G⊥AB,垂足為點(diǎn)P,過點(diǎn)C的直線交AB的延長線于點(diǎn)D,交GF的延長線于點(diǎn)E,已知AB=4,⊙O的半徑為.
(1)分別求出線段AP、CB的長;
(2)如果OE=5,求證:DE是⊙O的切線;
(3)如果tan∠E=,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com