【題目】育才中學(xué)計(jì)劃召開“誠(chéng)信在我心中”主題教育活動(dòng),需要選拔活動(dòng)主持人,經(jīng)過(guò)全校學(xué)生投票推薦,有2名男生和1名女生被推薦為候選主持人.
(1)小明認(rèn)為,如果從3名候選主持人中隨機(jī)選拔1名主持人,不是男生就是女生,因此選出的主持人是男生和女生的可能性相同,你同意他的說(shuō)法嗎?為什么?
(2)如果從3名候選主持人中隨機(jī)選拔2名主持人,請(qǐng)通過(guò)列表或樹狀圖求選拔出的2名主持人恰好是1名男生和1名女生的概率.

【答案】
(1)

解:不同意他的說(shuō)法.理由如下:

∵有2名男生和1名女生,

∴主持人是男生的概率=,

主持人是女生的概率=;


(2)

解:畫出樹狀圖如下:

一共有6種情況,恰好是1名男生和1名女生的有4種情況,

所以,P(恰好是1名男生和1名女生)==


【解析】(1)根據(jù)概率的意義解答即可;
(2)畫出樹狀圖,然后根據(jù)概率的意義列式計(jì)算即可得解.
【考點(diǎn)精析】本題主要考查了可能性的大小和列表法與樹狀圖法的相關(guān)知識(shí)點(diǎn),需要掌握一般地,隨機(jī)事件發(fā)生的可能性是有大小的,不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同;當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某糧油超市平時(shí)每天都將一定數(shù)量的某些品種的糧食進(jìn)行包裝以便出售,已知每天包裝大黃米的質(zhì)量是包裝江米質(zhì)量的倍,且每天包裝大黃米和江米的質(zhì)量之和為45千克.
(1)求平均每天包裝大黃米和江米的質(zhì)量各是多少千克?
(2)為迎接今年6月20日的“端午節(jié)”,該超市決定在前20天增加每天包裝大黃米和江米的質(zhì)量,二者的包裝質(zhì)量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復(fù)到原來(lái)每天的包裝質(zhì)量.分別求出在這20天內(nèi)每天包裝大黃米和江米的質(zhì)量隨天數(shù)變化的函數(shù)關(guān)系式,并寫出自變量的取值范圍.

(3)假設(shè)該超市每天都會(huì)將當(dāng)天包裝后的大黃米和江米全部售出,已知大黃米成本價(jià)為每千克7.9元,江米成本每千克9.5元,二者包裝費(fèi)用平均每千克均為0.5元,大黃米售價(jià)為每千克10元,江米售價(jià)為每千克12元,那么在這20天中有哪幾天銷售大黃米和江米的利潤(rùn)之和大于120元?[總利潤(rùn)=售價(jià)額﹣成本﹣包裝費(fèi)用].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是雙曲線在第二象限分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長(zhǎng)交另一分支于點(diǎn)B,以AB為底作等腰△ABC,且∠ACB=120°,點(diǎn)C在第一象限,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也不斷變化,但點(diǎn)C始終在雙曲線上運(yùn)動(dòng),則k的值為( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校以“我最喜愛的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其它項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

運(yùn)動(dòng)項(xiàng)目

頻數(shù)(人數(shù))

頻率

籃球

30

0.25

羽毛球

m

0.20

乒乓球

36

n

跳繩

18

0.15

其它

12

0.10

請(qǐng)根據(jù)以上圖表信息解答下列問(wèn)題:
(1)頻數(shù)分布表中的m= , n=;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為 °;
(3)從選擇“籃球”選項(xiàng)的30名學(xué)生中,隨機(jī)抽取3名學(xué)生作為代表進(jìn)行投籃測(cè)試,則其中某位學(xué)生被選中的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是射線CB上的一個(gè)動(dòng)點(diǎn),把△DCE沿DE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′.
(1)若點(diǎn)C′剛好落在對(duì)角線BD上時(shí),BC′=
(2)若點(diǎn)C′剛好落在線段AB的垂直平分線上時(shí),求CE的長(zhǎng);
(3)若點(diǎn)C′剛好落在線段AD的垂直平分線上時(shí),求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).

(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是_____;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過(guò)程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過(guò)程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)要進(jìn)行理、化實(shí)驗(yàn)加試,需用九年級(jí)兩個(gè)班級(jí)的學(xué)生整理實(shí)驗(yàn)器材.已知一班單獨(dú)整理需要30分鐘完成.
(1)如果一班與二班共同整理15分鐘后,一班另有任務(wù)需要離開,剩余工作由二班單獨(dú)整理15分鐘才完成任務(wù),求二班單獨(dú)整理這批實(shí)驗(yàn)器材需要多少分鐘?
(2)如果一、二的工作效率不變,先由二班單獨(dú)整理,時(shí)間不超過(guò)20分鐘,剩余工作再由一班獨(dú)立完成,那么整理完這批器材一班至少還需要多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC在網(wǎng)格中(網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1)依次進(jìn)行位似變換、軸對(duì)稱變換和平移變換后得到△A3B3C3

(1)△ABC與△A1B1C1的位似比等于  
(2)在網(wǎng)格中畫出△A1B1C1關(guān)于y軸的軸對(duì)稱圖形△A2B2C2;
(3)請(qǐng)寫出△A3B3C3是由△A2B2C2怎樣平移得到的?
(4)設(shè)點(diǎn)P(x,y)為△ABC內(nèi)一點(diǎn),依次經(jīng)過(guò)上述三次變換后,點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過(guò)A系統(tǒng)處理,處理后的污水(A級(jí)水)達(dá)到環(huán)保標(biāo)準(zhǔn)(簡(jiǎn)稱達(dá)標(biāo))的概率為p(0<p<1).經(jīng)化驗(yàn)檢測(cè),若確認(rèn)達(dá)標(biāo)便可直接排放;若不達(dá)標(biāo)則必須進(jìn)行B系統(tǒng)處理后直接排放. 某廠現(xiàn)有4個(gè)標(biāo)準(zhǔn)水量的A級(jí)水池,分別取樣、檢測(cè).多個(gè)污水樣本檢測(cè)時(shí),既可以逐個(gè)化驗(yàn),也可以將若干個(gè)樣本混合在一起化驗(yàn).混合樣本中只要有樣本不達(dá)標(biāo),則混合樣本的化驗(yàn)結(jié)果必不達(dá)標(biāo).若混合樣本不達(dá)標(biāo),則該組中各個(gè)樣本必須再逐個(gè)化驗(yàn);若混合樣本達(dá)標(biāo),則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個(gè)化驗(yàn);
方案二:平均分成兩組化驗(yàn);
方案三:三個(gè)樣本混在一起化驗(yàn),剩下的一個(gè)單獨(dú)化驗(yàn);
方案四:混在一起化驗(yàn).
化驗(yàn)次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若 ,求2個(gè)A級(jí)水樣本混合化驗(yàn)結(jié)果不達(dá)標(biāo)的概率;
(Ⅱ) 若 ,現(xiàn)有4個(gè)A級(jí)水樣本需要化驗(yàn),請(qǐng)問(wèn):方案一,二,四中哪個(gè)最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案