【題目】閱讀某同學對多項式進行因式分解的過程,并解決問題:
解:設,
原式(第一步)
(第二步)
(第三步)
(第四步)
(1)該同學第二步到第三步的變形運用了________(填序號);
A.提公因式法 B.平方差公式
C.兩數(shù)和的平方公式 D.兩數(shù)差的平方公式
(2)該同學在第三步用所設的的代數(shù)式進行了代換,得到第四步的結果,這個結果能否進一步因式分解?________(填“能”或“不能”).如果能,直接寫出最后結果________.
(3)請你模仿以上方法嘗試對多項式進行因式分行解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方體紙箱的長、寬、高分別為50cm、30cm、60cm,一只螞蟻從點A處沿著紙箱的表面爬到點B處.螞蟻爬行的最短路程為_______cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某旅行杜擬在暑假期間面向學生推出“林州紅旗渠一日游”活動,收費標準如下:
人數(shù)m | 0<m≤100 | 100<m≤200 | m>200 |
收費標準(元/人) | 90 | 85 | 75 |
甲、乙兩所學校計劃組織本校學生自愿參加此項活動.已知甲校報名參加的學生人數(shù)多于100人,乙校報名參加的學生人數(shù)少于100人.經(jīng)核算,若兩校分別組團共需花費20 800元,若兩校聯(lián)合組團只需花費18 000元.
(1)兩所學校報名參加旅游的學生人數(shù)之和超過200人嗎?為什么?
(2)兩所學校報名參加旅游的學生各有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分10分)已知四邊形ABCD是矩形,對角線AC和BD相交于點P,若在矩形的上方加一個△DEA,且使DE∥AC,AE∥BD.
(1)求證:四邊形DEAP是菱形;
(2)若AE=CD,求∠DPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】旅游公司在景區(qū)內配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運規(guī)律如下:當x不超過100元時,觀光車能全部租出;當x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應為多少元?(注:凈收入=租車收入﹣管理費)
(2)當每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列調查中,最適合采用抽樣調查的是( )
A.對某地區(qū)現(xiàn)有的名百歲以上老人睡眠時間的調查
B.對“神舟十一號”運載火箭發(fā)射前零部件質量情況的調查
C.對某校七年級三班學生視力情況的調查
D.對株洲市民與長沙市民是否了解“株洲南雅實驗中學高復班”的調查
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.
(1)求BD的長;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形DEF是三角形ABC經(jīng)過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應點,觀察點與點的坐標之間的關系,解答下列問題:
(1)分別寫出點A與點D,點B與點E,點C與點F的坐標,并說說對應點的坐標有哪些特征;
(2)若點P(a+3,4-b)與點Q(2a,2b-3)也是通過上述變換得到的對應點,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,將一個邊長為2的正方形ABCD和一個長為2,寬為1的長方形CEFD拼在一起,構成一個大的長方形ABEF,現(xiàn)將小長方形CEFD繞點C順時針旋轉至CE′F′D′,旋轉角為α.
(1)當邊CD′恰好經(jīng)過EF的中點H時,求旋轉角α的大;
(2)如圖2,G為BC中點,且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點C順時針旋轉一周的過程中,△DCD′與△BCD′能否全等?若能,直接寫出旋轉角α的大;若不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com