如圖,在平面直角坐標系中,頂點為(4,1)的拋物線交軸于點,交軸于,兩點(點在點的左側(cè)),已知點坐標為(6,0).
(1)求此拋物線的解析式;
(2)聯(lián)結(jié)AB,過點作線段的垂線交拋物線于點,如果以點為圓心的圓與拋物線的對稱軸相切,先補全圖形,再判斷直線與⊙的位置關(guān)系并加以證明;
(3)已知點是拋物線上的一個動點,且位于,兩點之間.問:當點運動到什么位置時,的面積最大?求出的最大面積.
(1)拋物線的解析式為;
(2)直線BD與⊙相離;
(3)的最大面積是.
【解析】
試題分析:(1)根據(jù)頂點坐標列出頂點式,再將C點坐標代入即可;
(2)先求出圓的半徑,再借助三角形相似,求出C到直線的距離,比較他們的大小即可;
(3)過點作平行于軸的直線交于點.設(shè)出點坐標,求出PQ的值,再表示出
的面積,借助函數(shù)關(guān)系式求出最值.
試題解析:(1)∵拋物線的頂點為(4,1),
∴設(shè)拋物線解析式為.
∵拋物線經(jīng)過點(6,0),
∴.
∴.
∴.
所以拋物線的解析式為;
(2)補全圖形、判斷直線BD與⊙相離
令=0,則,.
∴點坐標(2,0).
又∵拋物線交軸于點,
∴A點坐標為(0,-3),
∴.
設(shè)⊙與對稱軸l相切于點F,則⊙的半徑CF=2,
作⊥BD于點E,則∠BEC=∠AOB=90°.
∵,
∴.
又∵,
∴.
∴∽,
∴.
∴,
∴.
∴直線BD與⊙相離;
(3)如圖,過點作平行于軸的直線交于點.
∵A(0,-3),(6,0).
∴直線解析式為.
設(shè)點坐標為(,),
則點的坐標為(,).
∴PQ=-()=.
∵,
∴當時,的面積最大為
∵當時,=
∴點坐標為(3,).
綜上:點的位置是(3,),的最大面積是.
考點:拋物線,圓,動點問題.
科目:初中數(shù)學 來源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com