【題目】如圖,AM為⊙O的切線,A為切點,過⊙O上一點B作BD⊥AM于點D,BD交⊙O于C,OC平分∠AOB.
(1)求∠AOB的度數;
(2)若線段CD的長為2cm,求的長度.
【答案】(1)120°;(2).
【解析】
(1)由AM為圓O的切線,利用切線的性質得到OA與AM垂直,再由BD與AM垂直,得到OA與BD平行,利用兩直線平行內錯角相等得到一對角相等,再由OC為角平分線得到一對角相等,以及OB=OC,利用等邊對等角得到一對角相等,等量代換得到∠BOC=∠OBC=∠OCB=60°,即可得出答案;
(2)過點O作OE⊥BD,垂足為E,由題意可證四邊形ADEO是矩形,可得OA=DE,即可求CD=CE=2cm,可得OA=4cm,根據弧長公式可求弧AB的長度.
解:(1)∵AM為圓O的切線,
∴OA⊥AM,
∵BD⊥AM,
∴∠OAD=∠BDM=90°,
∴OA∥BD,
∴∠AOC=∠OCB,
∵OB=OC,
∴∠OBC=∠OCB,
∵OC平分∠AOB,
∴∠AOC=∠BOC,
∴∠BOC=∠OCB=∠OBC=60°,
∴∠AOB=120°;
(2)如圖:過點O作OE⊥BD,垂足為E
∵∠BOC=∠OCB=∠OBC=60°,
∴OB=OC=BC
∵OE⊥BD,
∴BE=CE=BC=OA
∵OE⊥BD,且OA⊥AD,BD⊥AD
∴四邊形ADEO是矩形
∴OA=DE
∴CD+CE=OA=2CE,且CD=2cm
∴CE=2cm
∴OA=4cm
∴弧AB的長度= =π
科目:初中數學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,平行四邊形ABCD在第一象限,且AB∥x軸.直線y=-x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數圖象如圖②,那么平行四邊形ABCD的面積為()
A.4B.C.D.8
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列兩段材料,回答問題:
材料一:點,的中點坐標為.例如,點,的中點坐標為,即
材料二:如圖1,正比例函數和的圖象相互垂直,分別在和上取點、使得分別過點作軸的垂線,垂足分別為點.顯然,,設,,則,..于是,所以的值為一個常數,一般地,一次函數,可分別由正比例函數平移得到.
所以,我們經過探索得到的結論是:任意兩個一次函數,的圖象相互垂直,則的值為一個常數.
(1)在材料二中,=______(寫出這個常數具體的值)
(2)如圖2,在矩形中,點是中點,用兩段材料的結論,求點的坐標和的垂直平分線的解析式;
(3)若點與點關于對稱,用兩段材料的結論,求點的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標中,四邊形OCNM為矩形,如圖1,M點坐標為(m,0),C點坐標為(0,n),已知m,n滿足.
(1)求m,n的值;
(2)①如圖1,P,Q分別為OM,MN上一點,若∠PCQ=45°,求證:PQ=OP+NQ;
②如圖2,S,G,R,H分別為OC,OM,MN,NC上一點,SR,HG交于點D.若∠SDG=135°,,則RS=______;
(3)如圖3,在矩形OABC中,OA=5,OC=3,點F在邊BC上且OF=OA,連接AF,動點P在線段OF是(動點P與O,F不重合),動點Q在線段OA的延長線上,且AQ=FP,連接PQ交AF于點N,作PM⊥AF于M.試問:當P,Q在移動過程中,線段MN的長度是否發(fā)生變化?若不變求出線段MN的長度;若變化,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,⊙O經過A、B兩點,且交AC于點D,連接BD,∠DBC=∠BAC.
(1)證明BC與⊙O相切;
(2)若⊙O的半徑為6,∠BAC=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E、F分別在平行四邊形ABCD邊BC和AD上(E、F都不與兩端點重合),連結AE、DE、BF、CF,其中AE和BF交于點G,DE和CF交于點H.令,.若,則圖中有_______個平行四邊形(不添加別的輔助線);若,且四邊形ABCD的面積為28,則四邊形FGEH的面積為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com