【題目】某中學(xué)庫存若干套桌凳,準(zhǔn)備修理后支援貧困山區(qū)學(xué)校,現(xiàn)有甲、乙兩木工組,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲單獨(dú)修完這些桌凳比乙單獨(dú)修完多用9天,學(xué)校每天付甲組80元修理費(fèi),付乙組110元修理費(fèi).
(1)問該中學(xué)庫存多少套桌凳?
(2)在修理過程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:①由甲單獨(dú)修理;②由乙單獨(dú)修理;③甲、乙合作同時(shí)修理.你認(rèn)為哪種方案省時(shí)又省錢為什么?
【答案】(1)該中學(xué)庫存900套桌凳(2)甲、乙合作同時(shí)修理.這種方案省時(shí)又省錢
【解析】
(1)利用“甲單獨(dú)修完這些桌凳用的天數(shù)=乙單獨(dú)修完這些課桌用的天數(shù)+9天”這一相等關(guān)系列出方程求解即可.
(2)根據(jù)題意求出三種方案的花費(fèi),比較即得.
解:(1)設(shè)該中學(xué)庫存x套桌凳,由題意得
解這個(gè)方程得:x=900
答:該中學(xué)庫存900套桌凳;
(2)①由甲單獨(dú)修理(900÷20) ×(80+10)=4050(元)
②由乙單獨(dú)修理(900÷25) ×(110+10)=4320(元)
③設(shè)甲、乙合作同時(shí)修理需要y天
(20+25)y=900
∴y=20
(元)
4000 < 4050 < 4320
答: 甲、乙合作同時(shí)修理.這種方案省時(shí)又省錢
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為( 2,0 ),(4,0),點(diǎn)C的坐標(biāo)為(m, m)(m為非負(fù)數(shù)),則CA+CB的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的單位正方形網(wǎng)格中,△ABC經(jīng)過平移后得到△A1B1C1,已知在AC上一點(diǎn)P(2.4,2)平移后的對應(yīng)點(diǎn)為P1,點(diǎn)P1繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°,得到對應(yīng)點(diǎn)P2,則P2點(diǎn)的坐標(biāo)為
A.(1.4,-1) B.(1.5,2) C.(1.6,1) D.(2.4,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點(diǎn)O在AB上,經(jīng)過點(diǎn)A的⊙O與BC相切于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)問題:用邊長相等的正三角形、正方形和正六邊形能否進(jìn)行平面圖形的鑲嵌?
問題探究:為了解決上述數(shù)學(xué)問題,我們采用分類討論的思想方法去進(jìn)行探究.
探究一:從正三角形、正方形和正六邊形中任選一種圖形,能否進(jìn)行平面圖形的鑲嵌?
第一類:選正三角形.因?yàn)檎切蔚拿恳粋(gè)內(nèi)角是60°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有6個(gè)正三角形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形可以進(jìn)行平面圖形的鑲嵌.
第二類:選正方形.因?yàn)檎叫蔚拿恳粋(gè)內(nèi)角是90°,所以在鑲嵌平面時(shí),圍繞某一點(diǎn)有4個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正方形也可以進(jìn)行平面圖形的鑲嵌.
第三類:選正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)
探究二:從正三角形、正方形和正六邊形中任選兩種圖形,能否進(jìn)行平面圖形的鑲嵌?
第四類:選正三角形和正方形
在鑲嵌平面時(shí),設(shè)圍繞某一點(diǎn)有x個(gè)正三角形和y個(gè)正方形的內(nèi)角可以拼成個(gè)周角.根據(jù)題意,可得方程
60x+90y=360
整理,得2x+3y=12.
我們可以找到唯一組適合方程的正整數(shù)解為.
鑲嵌平面時(shí),在一個(gè)頂點(diǎn)周圍圍繞著3個(gè)正三角形和2個(gè)正方形的內(nèi)角可以拼成一個(gè)周角,所以用正三角形和正方形可以進(jìn)行平面鑲嵌
第五類:選正三角形和正六邊形.(仿照上述方法,寫出探究過程及結(jié)論)
第六類:選正方形和正六邊形,(不寫探究過程,只寫出結(jié)論)
探究三:用正三角形、正方形和正六邊形三種圖形是否可以鑲嵌平面?
第七類:選正三角形、正方形和正六邊形三種圖形.(不寫探究過程,只寫結(jié)論),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解九年級課業(yè)負(fù)擔(dān)情況,某校隨機(jī)抽取80名九年級學(xué)生進(jìn)行問卷調(diào)查,在整理并匯總這80張有效問卷的數(shù)據(jù)時(shí)發(fā)現(xiàn),每天完成課外作業(yè)時(shí)間,最長不超過180分鐘,最短不少于60分鐘,并將調(diào)查結(jié)果繪制成如圖所示的頻數(shù)分布直方圖.
(1)被調(diào)查的80名學(xué)生每天完成課外作業(yè)時(shí)間的中位數(shù)在_____組(填時(shí)間范圍).
(2)該校九年級共有800名學(xué)生,估計(jì)大約有_____名學(xué)生每天完成課外作業(yè)時(shí)間在120分鐘以上(包括120分鐘)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形ABCD的邊長是4,∠DAB=60,點(diǎn)M,N分別在邊AD,AB上,MN⊥AC,垂足為P,把△AMN沿MN折疊得到△A'MN,若△A'DC恰為等腰三角形,則AP的長為_____。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com