【題目】在平面直角坐標系中,點A、B的坐標分別為( 2,0 ),(4,0),點C的坐標為(m, m)(m為非負數(shù)),則CA+CB的最小值是_____.
科目:初中數(shù)學 來源: 題型:
【題目】寫出下列各題中關于的函數(shù)關系式,并判斷是否為的一次函數(shù),是否為正比例函數(shù).
(1)長方形的面積為20,長方形的長與寬之間的函數(shù)關系式;
(2)剛上市時西瓜每千克3.6元,買西瓜的總價元與所買西瓜千克之間的函數(shù)關系式;
(3)倉庫內(nèi)有粉筆400盒,如果每個星期領出36盒,倉庫內(nèi)余下的粉筆盒數(shù)與星期數(shù)之間的函數(shù)關系式;
(4)爸爸為小林存了一份教育儲蓄,首次存入10 000元,以后每個月存入500元,存入總數(shù)元與月數(shù)之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
將幾何圖形按照某種法則或規(guī)則變換成另一種幾何圖形的過程叫做幾何變換.旋轉(zhuǎn)變換是幾何變換的一種基本模型.經(jīng)過旋轉(zhuǎn),往往能使圖形的幾何性質(zhì)明白顯現(xiàn).題設和結(jié)論中的元素由分散變?yōu)榧校嗷ブg的關系清楚明了,從而將求解問題靈活轉(zhuǎn)化.
問題提出:如圖1,是邊長為1的等邊三角形,為內(nèi)部一點,連接,求的最小值.
方法通過轉(zhuǎn)化,把由三角形內(nèi)一點發(fā)出的三條線段(星型線)轉(zhuǎn)化為兩定點之間的折線(化星為折),再利用“兩點之間線段最短”求最小值(化折為直).
問題解決:如圖2,將繞點逆時針旋轉(zhuǎn)至,連接、,記與交于點,易知,.由,,可知為正三角形,有.
故.因此,當共線時,有最小值是.
學以致用:(1)如圖3,在中,,,為內(nèi)部一點,連接、,則的最小值是__________.
(2)如圖4,在中,,,為內(nèi)部一點,連接、,求的最小值.
(3)如圖5,是邊長為2的正方形內(nèi)一點,為邊上一點,連接、,求的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,且OE=OD,則DP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點為直線上一點,過點作射線,使,將一直角三角板的直角項點放在點處,一邊在射線上,另一邊在直線的下方.
如圖2,將圖1中的三角板繞點逆時針旋轉(zhuǎn),使邊在的內(nèi)部,且恰好平分.此時__ 度;
如圖3,繼續(xù)將圖2中的三角板繞點按逆時針方向旋轉(zhuǎn),使得在的內(nèi)部.試探究與之間滿足什么等量關系,并說明理由;
將圖1中的三角板繞點按每秒的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,若第秒時,三條射線恰好構(gòu)成相等的角,則的值為__ (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,射線.
請畫出的平分線;
如果,射線分別表示從點出發(fā)東、西兩個方向,那么射線 方向,射線表示 方向.
在的條件下,當時,在圖中找出所有與互補的角,這些角是_ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學庫存若干套桌凳,準備修理后支援貧困山區(qū)學校,現(xiàn)有甲、乙兩木工組,甲每天修桌凳20套,乙每天修桌凳比甲多5套,甲單獨修完這些桌凳比乙單獨修完多用9天,學校每天付甲組80元修理費,付乙組110元修理費.
(1)問該中學庫存多少套桌凳?
(2)在修理過程中,學校要派一名工人進行質(zhì)量監(jiān)督,學校負擔他每天10元生活補助費,現(xiàn)有三種修理方案:①由甲單獨修理;②由乙單獨修理;③甲、乙合作同時修理.你認為哪種方案省時又省錢為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com