【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.
【答案】(1)(2)證明見解析
【解析】
試題分析:(1)利用平行四邊形的性質(zhì)得出∠5=∠3,∠AEB=∠4,進(jìn)而利用全等三角形的判定得出即可;
(2)利用全等三角形的性質(zhì)得出AE=CF,進(jìn)而得出四邊形AECF是平行四邊形,即可得出答案.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∴∠5=∠3,
∵∠1=∠2,
∴∠AEB=∠4,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(AAS),
∴BE=DF;
(2)由(1)得△ABE≌△CDF,
∴AE=CF,
∵∠1=∠2,
∴AE∥CF,
∴四邊形AECF是平行四邊形,
∴AF∥CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若下列各組值代表線段的長度,以它們?yōu)檫吥軜?gòu)成三角形的是( 。
A. 6、13、7 B. 6、6、12 C. 6、10、3 D. 6、9、13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D在⊙O的直徑AB的延長線上,點C在⊙O上,AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,BC=1,AC=.
(1)以點B為旋轉(zhuǎn)中心,將△ABC沿逆時針方向旋轉(zhuǎn)90°得到△A′BC′,請畫出變換后的圖形;
(2)求點A和點A′之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+2x+m﹣5.
(1)如果該二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如果該二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,且點B的坐標(biāo)為(1,0),求它的表達(dá)式和點C的坐標(biāo);
(3)如果一次函數(shù)y2=px+q的圖象經(jīng)過點A、C,請根據(jù)圖象直接寫出y2<y1時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,動點P以每秒一個單位的速度從點A出發(fā),沿對角線AC向點C移動,同時動點Q以相同的速度從點C出發(fā),沿邊CB向點B移動.設(shè)P,Q兩點移動時間為t秒(0≤t≤4).
(1)用含t的代數(shù)式表示線段PC的長是 ;
(2)當(dāng)△PCQ為等腰三角形時,求t的值;
(3)以BQ為直徑的圓交PQ于點M,當(dāng)M為PQ的中點時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,動點P以每秒一個單位的速度從點A出發(fā),沿對角線AC向點C移動,同時動點Q以相同的速度從點C出發(fā),沿邊CB向點B移動.設(shè)P,Q兩點移動時間為t秒(0≤t≤4).
(1)用含t的代數(shù)式表示線段PC的長是 ;
(2)當(dāng)△PCQ為等腰三角形時,求t的值;
(3)以BQ為直徑的圓交PQ于點M,當(dāng)M為PQ的中點時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題“全等三角形的面積相等”的條件是____________________,結(jié)論是______________________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com