【題目】已知二次函數(shù)y1=x2+2x+m﹣5.
(1)如果該二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如果該二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,且點B的坐標(biāo)為(1,0),求它的表達(dá)式和點C的坐標(biāo);
(3)如果一次函數(shù)y2=px+q的圖象經(jīng)過點A、C,請根據(jù)圖象直接寫出y2<y1時,x的取值范圍.
【答案】(1)m<6;(2)y1=x2+2x﹣3,C(0,﹣3);(3)x<﹣3或x>0.
【解析】
試題分析:(1)由二次函數(shù)的圖象與x軸有兩個交點得出判別式△>0,得出不等式,解不等式即可;
(2)二次函數(shù)y1=x2+2x+m﹣5的圖象經(jīng)過把點B坐標(biāo)代入二次函數(shù)解析式求出m的值,即可得出結(jié)果;點B(1,0);
(3)由圖象可知:當(dāng)y2<y1時,比較兩個函數(shù)圖象的位置,即可得出結(jié)果.
解:(1)∵二次函數(shù)y1=x2+2x+m﹣5的圖象與x軸有兩個交點,
∴△>0,
∴22﹣4(m﹣5)>0,
解得:m<6;
(2)∵二次函數(shù)y1=x2+2x+m﹣5的圖象經(jīng)過點(1,0),
∴1+2+m﹣5=0,
解得:m=2,
∴它的表達(dá)式是y1=x2+2x﹣3,
∵當(dāng)x=0時,y=﹣3,
∴C(0,﹣3);
(3)由圖象可知:當(dāng)y2<y1時,x的取值范圍是x<﹣3或x>0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下現(xiàn)象:①傳送帶上,瓶裝飲料的移動;②打氣筒打氣時,活塞的運(yùn)動;③鐘擺的擺動;④在蕩秋千的小朋友.其中屬于平移的是( )
A. ①② B. ①③ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2﹣2x﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,該拋物線頂點為D,對稱軸交x軸于點H.
(1)求A,B兩點的坐標(biāo);
(2)設(shè)點P在x軸下方的拋物線上,當(dāng)∠ABP=∠CDB時,求出點P的坐標(biāo);
(3)以O(shè)B為邊最第四象限內(nèi)作等邊△OBM.設(shè)點E為x軸的正半軸上一動點(OE>OH),連接ME,把線段ME繞點M順時針旋轉(zhuǎn)60°得MF,求線段DF的長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小宋作出了邊長為2的第一個正方形A1B1C1D1,算出了它的面積.然后分別取正方形A1B1C1D1四邊的中點A2、B2、C2、D2作出了第二個正方形A2B2C2D2,算出了它的面積.用同樣的方法,作出了第三個正方形A3B3C3D3,算出了它的面積…,由此可得,第六個正方形A6B6C6D6的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“石頭、剪刀、布”是民間廣為流傳的游戲,游戲時,雙方每次只能做“石頭”、“剪刀”、“布”這三種手勢中的一種.假定雙方每次都是等可能的做這三種手勢.
問:小強(qiáng)和小剛在一次游戲時,
(1)兩個人同時出現(xiàn)“石頭”手勢的概率是多少?
(2)兩個人出現(xiàn)不同手勢的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com