【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(8,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OB的中點(diǎn)E,且與邊BC交于點(diǎn)D.
(1)求反比例函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)求三角形DOE的面積;
(3)若過(guò)點(diǎn)D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,求此直線解析式.
【答案】(1) 反比例函數(shù)解析式為y=,點(diǎn)D的坐標(biāo)為(2,4);(2)三角形DOE的面積為6;
(3) y=-2x+8或y=x+.
【解析】
(1)根據(jù)中心對(duì)稱求出點(diǎn)E的坐標(biāo), 再代入反比例函數(shù)解析式求出k, 然后根據(jù)點(diǎn)D的縱坐標(biāo)與點(diǎn)B的縱坐標(biāo)相等代入求解即可得到點(diǎn)D的坐標(biāo);
(2) 根據(jù)點(diǎn)D的坐標(biāo)求出BD的長(zhǎng), 再由點(diǎn)E是OB的中點(diǎn)可知,由此可得出結(jié)論;
(3) 設(shè)直線與x軸的交點(diǎn)為F, 根據(jù)點(diǎn)D的坐標(biāo)求出CD, 再根據(jù)梯形的面積分兩種情況求出OF的長(zhǎng), 然后寫(xiě)出點(diǎn)F的坐標(biāo), 再利用待定系數(shù)法求一次函數(shù)的解析式即可.
解:(1)矩形OABC的頂點(diǎn)B的坐標(biāo)是(8,4), E是矩形ABCD 的對(duì)稱中心,
點(diǎn)E的坐標(biāo)為(4,2),代入反比例函數(shù)解析式得=2, 解得k=8,
反比例函數(shù)解析式為y=
點(diǎn)D在邊BC上,點(diǎn)D的縱坐標(biāo)為4,
y=4時(shí), x=2,
點(diǎn)D的坐標(biāo)為(2,4);
(2)D的坐標(biāo)為(2,4),B(8,4),
BD=6, OC=4.
點(diǎn)E是OB的中點(diǎn),
==6
(3) 如圖,
設(shè)直線與x軸的交點(diǎn)為F,矩形OABC的面積=84=32,
矩形OABC的面積分成3:5的兩部分,
梯形OFDC的面積為=12,或者=20
點(diǎn)D的坐標(biāo)為(2,4),
若(2+OF)4=12,
解得OF=4,此時(shí)點(diǎn)F的坐標(biāo)為(4,0),
若 (2+OF)4=20,
解得OF=8, 此時(shí)點(diǎn)F的坐標(biāo)為(8,0),與A點(diǎn)重合,
當(dāng)D(2,4),F(4,0)時(shí),可得函數(shù)解析式為y=-2x+8
當(dāng)D(2,4),F(8,0)時(shí),可得函數(shù)解析式為y=x+
綜上所述,直線的解析式為y=-2x+8或y=x+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大;⑤當(dāng)函數(shù)值y<0時(shí),自變量x的取值范圍是x<-1或x>5.
其中正確的結(jié)論有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)面積為10的正方形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)三角形,使三角形三邊長(zhǎng)分別為2、、;
(3)如圖3,點(diǎn)A、B、C是小正方形的頂點(diǎn),求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育文化用品商店購(gòu)進(jìn)籃球和排球共200個(gè),進(jìn)價(jià)和售價(jià)如下表全部銷售完后共獲利潤(rùn)2600元.
類別 價(jià)格 | 籃球 | 排球 |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 95 | 60 |
(1)求商店購(gòu)進(jìn)籃球和排球各多少個(gè)?
(2)王老師在元旦節(jié)這天到該體育文化用品商店為學(xué)校買籃球和排球各若干個(gè)(兩種球都買了),商店在他的這筆交易中獲利100元王老師有哪幾種購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論中:
①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1).
其中正確的結(jié)論有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過(guò)D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=12,EM=5,求AN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個(gè)條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)論m取什么實(shí)數(shù),點(diǎn)A(m+1,2m﹣2)都在直線l上.若點(diǎn)B(a,b)是直線l上的動(dòng)點(diǎn),則(2a﹣b﹣6)3的值等于____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担瑢(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-2+2=+2,又∵≥0,∴ +2≥0+ 2,即a+b ≥2.
(1)根據(jù)上述內(nèi)容,回答下列問(wèn)題:在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥ 2,當(dāng)且僅當(dāng)a、b滿足________時(shí),a+b有最小值2.
(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a ,DB=2b, 試根據(jù)圖形驗(yàn)證a+b≥2成立,并指出等號(hào)成立時(shí)的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連接DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com