【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担瑢(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-2+2=+2,又∵≥0,∴ +2≥0+ 2,即a+b ≥2.
(1)根據(jù)上述內(nèi)容,回答下列問(wèn)題:在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥ 2,當(dāng)且僅當(dāng)a、b滿足________時(shí),a+b有最小值2.
(2)思考驗(yàn)證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a ,DB=2b, 試根據(jù)圖形驗(yàn)證a+b≥2成立,并指出等號(hào)成立時(shí)的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連接DF、EF,求四邊形ADFE面積的最小值.
【答案】(1)a=b ;(2)當(dāng)D與O重合時(shí)或a=b時(shí),等式成立;(3)28.
【解析】
(1)由給出的材料可知a=b時(shí);
(2)因?yàn)?/span>AD=2a,DB=2b,所以AB=2a+2b,CO為中線,所以CO=a+b,再利用射影定理得CD=,在直角三角形COD中斜邊大于直角邊即CO>CD,問(wèn)題得證;
(3)把A點(diǎn)的橫坐標(biāo)為1,代入函數(shù)y=得,y=4,由(2)知:當(dāng)DH=EH時(shí),DE最小,此時(shí)S四邊形ADFE=×8×(4+3)=28.
(1)a=b,
(2)有已知得CO=a+b,CD=2,CO≥CD,即≥2.
當(dāng)D與O重合時(shí)或a=b時(shí),等式成立.
(3),
當(dāng)DE最小時(shí)S四邊形ADFE最小.
過(guò)A作AH⊥x軸,由(2)知:當(dāng)DH=EH時(shí),DE最小,
所以DE最小值為8,此時(shí)S四邊形ADFE=(4+3)=28.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(8,4),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OB的中點(diǎn)E,且與邊BC交于點(diǎn)D.
(1)求反比例函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)求三角形DOE的面積;
(3)若過(guò)點(diǎn)D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,求此直線解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校是乒乓球體育傳統(tǒng)項(xiàng)目學(xué)校,為進(jìn)一步推動(dòng)該項(xiàng)目的開(kāi)展,學(xué)校準(zhǔn)備到體育用品店購(gòu)買(mǎi)直拍球拍和橫拍球拍若干副,并且每買(mǎi)一副球拍必須要買(mǎi)10個(gè)乒乓球,乒乓球的單價(jià)為2元/個(gè),若購(gòu)買(mǎi)20副直拍球拍和15副橫拍球拍花費(fèi)9000元;購(gòu)買(mǎi)10副橫拍球拍比購(gòu)買(mǎi)5副直拍球拍多花費(fèi)1600元.
(1)求兩種球拍每副各多少元?
(2)若學(xué)校購(gòu)買(mǎi)兩種球拍共40副,且直拍球拍的數(shù)量不多于橫拍球拍數(shù)量的3倍,請(qǐng)你給出一種費(fèi)用最少的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,、、、各點(diǎn)的坐標(biāo)分別為、、、.
(1)在給出的圖形中,畫(huà)出四邊形關(guān)于軸對(duì)稱(chēng)的四邊形,并寫(xiě)出點(diǎn)和的坐標(biāo);
(2)在四邊形內(nèi)部畫(huà)一條線段將四邊形分割成兩個(gè)等腰三角形,并直接寫(xiě)出兩個(gè)等腰三角形的面積差.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,,,點(diǎn)、在軸上且關(guān)于軸對(duì)稱(chēng).
(1)求點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)出發(fā)沿軸正方向向終點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,點(diǎn)到直線的距離的長(zhǎng)為,求與的關(guān)系式;
(3)在(2)的條件下,當(dāng)點(diǎn)到的距離為時(shí),連接,作的平分線分別交、于點(diǎn)、,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績(jī)分別被制成下列兩個(gè)統(tǒng)計(jì)圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(jī)/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | ||||
乙 |
(1)_ ; ; ;
(2)填空:(填“甲”或“乙”),
①從平均數(shù)和中位數(shù)的角度來(lái)比較,成績(jī)較好的是 ;
②從平均數(shù)和眾數(shù)的角度來(lái)比較,成績(jī)較好的是 ;
③成績(jī)相對(duì)較穩(wěn)定的是 ;
(3)若環(huán)以上有希望奪冠,選派其中一名參賽,你認(rèn)為應(yīng)選 隊(duì)員.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,對(duì)角線、交于點(diǎn),,,平分,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn),連接.
(1)求證:四邊形是菱形;
(2)若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:二次函數(shù)y=x2+bx+c 的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-3,0),與 y 軸交于點(diǎn) C(0,-3)在拋物線上.
(1)求拋物線的表達(dá)式;
(2)拋物線的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn) P,求出當(dāng) PB+PC 最小時(shí)點(diǎn) P的坐標(biāo);
(3)若拋物線上有一動(dòng)點(diǎn)Q,使△ABQ的面積為6,求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,C是的中點(diǎn),CE⊥AB于 E,BD交CE于點(diǎn)F.
(1)若CD ﹦6, AC ﹦8,求⊙O的半徑
(2)求證:CF﹦BF;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com