【題目】兩塊等腰直角三角板△ABC△DEC如圖擺放,其中∠ACB=∠DCE=90°,FDE的中點,HAE的中點,GBD的中點.

1)如圖1,若點D、E分別在AC、BC的延長線上,通過觀察和測量,猜想FHFG的數(shù)量關(guān)系為______和位置關(guān)系為______;

2)如圖2,若將三角板△DEC繞著點C順時針旋轉(zhuǎn)至ACE在一條直線上時,其余條件均不變,則(1)中的猜想是否還成立,若成立,請證明,不成立請說明理由;

3)如圖3,將圖1中的△DEC繞點C順時針旋轉(zhuǎn)一個銳角,得到圖3,(1)中的猜想還成立嗎?寫出結(jié)論,證明.

【答案】1)相等,垂直.(2)成立,證明見解析;(3)成立,結(jié)論是FH=FGFHFG.證明見解析.

【解析】

1)證AD=BE,根據(jù)三角形的中位線推出FH=AD,FHAD,FG=BEFGBE,即可推出答案;
2)證ACD≌△BCE,推出AD=BE,根據(jù)三角形的中位線定理即可推出答案;
3)連接BE、AD,根據(jù)全等推出AD=BE,根據(jù)三角形的中位線定理即可推出答案.

1)∵CE=CD,AC=BC,∠ECA=DCB=90°,

BE=AD

FDE的中點,HAE的中點,GBD的中點,

FH=AD,FHAD,FG=BE,FGBE,

FH=FG,

ADBE,

FHFG,

故答案為:相等,垂直.

2)答:成立,

證明:∵CE=CD,∠ECD=ACD=90°AC=BC,

∴△ACD≌△BCE

AD=BE,

由(1)知:FH=AD,FHAD,FG=BEFGBE,

FH=FGFHFG,

∴(1)中的猜想還成立.

3)答:成立,結(jié)論是FH=FG,FHFG

連接ADBE,兩線交于Z,ADBCX

同(1)可證

FH=AD,FHADFG=BE,FGBE,

∵三角形ECD、ACB是等腰直角三角形,

CE=CD,AC=BC,∠ECD=ACB=90°

∴∠ACD=BCE,

ACDBCE

,

∴△ACD≌△BCE

AD=BE,∠EBC=DAC,

∵∠DAC+CXA=90°,∠CXA=DXB,

∴∠DXB+EBC=90°,

∴∠EZA=180°90°=90°,

ADBE,

FHAD,FGBE

FHFG,

FH=FGFHFG,

結(jié)論是FH=FG,FHFG.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+2x+c的圖象與x軸交于點A(﹣1,0)和點B,與y軸交于點C(0,3).

(1)求該二次函數(shù)的表達式;

(2)過點A的直線AD∥BC且交拋物線于另一點D,求直線AD的函數(shù)表達式;

(3)在(2)的條件下,請解答下列問題:

x軸上是否存在一點P,使得以B、C、P為頂點的三角形與△ABD相似?若存在,求出點P的坐標;若不存在,請說明理由;

動點M以每秒1個單位的速度沿線段AD從點A向點D運動,同時,動點N以每秒個單位的速度沿線段DB從點D向點B運動,問:在運動過程中,當運動時間t為何值時,△DMN的面積最大,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個質(zhì)地均勻的小正方體,六個面上分別標有數(shù)字1,1,2,4,5,6,擲一次小正方體,觀察朝上一面的數(shù)字.

(1)朝上的數(shù)字是“3”的事件是什么事件?它的概率是多少?

(2)朝上的數(shù)字是“1”的事件是什么事件?它的概率是多少?

(3)朝上的數(shù)字是偶數(shù)的事件是什么事件?它的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖a,P、Q是△ABC的邊BC上的兩點,且△APQ為等邊三角形,AB=AC,

1)求證:BP=CQ.

2)如圖a,若∠BAC=120,AP=3,求BC的長.

3)若∠BAC=120,沿直線BC向右平行移動△APQ得到△A′P′Q′(如圖b),A′Q′AC交于點M.當點P移動到何處時,△AA′M≌△CQ′M?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ykx+k2經(jīng)過點(mn+1)和(m+1,2n+3),且﹣2k0,則n的取值范圍是( 。

A. 2n0B. 4n<﹣2C. 4n0D. 0n<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計劃購進AB兩種型號的電動自行車共30輛,其中A型電動自行車不少于20輛,A、B兩種型號電動自行車的進貨單價分別為2500元、3000元,售價分別為2800元、3500元,設(shè)該商店計劃購進A型電動自行車m輛,兩種型號的電動自行車全部銷售后可獲利潤y元.

1)求出ym之間的函數(shù)關(guān)系式;

2)該商店如何進貨才能獲得最大利潤?此時最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD,AF分別為ABC的中線和高,BEABD的角平分線.

1)若∠BED=40°,∠BAD=25°,求∠BAF的大;

2)若ABC的面積為40,BD=5,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場設(shè)定了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(轉(zhuǎn)盤被等分成16個扇形),并規(guī)定:顧客在商場消費每滿200元,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準紅、黃和藍色區(qū)域,顧客就可以分別獲得50元、30元和10元的購物券.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,則可以直接獲得購物券15元.

(1)轉(zhuǎn)動一次轉(zhuǎn)盤,獲得50元、30元、10元購物券的概率分別是多少?

(2)如果有一名顧客在商場消費了200元,通過計算說明轉(zhuǎn)轉(zhuǎn)盤和直接獲得購物券,哪種方式對這位顧客更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生閱讀能力,我區(qū)某校倡議八年級學(xué)生利用雙休日加強課外閱讀,為了解同學(xué)們閱讀的情況,學(xué)校隨機抽查了部分同學(xué)周末閱讀時間,并且得到數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:

1)將條形統(tǒng)計圖補充完整;被調(diào)查的學(xué)生周末閱讀時間眾數(shù)是多少小時,中位數(shù)是多少小時;

2)計算被調(diào)查學(xué)生閱讀時間的平均數(shù);

3)該校八年級共有500人,試估計周末閱讀時間不低于1.5小時的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案