精英家教網(wǎng)已知:如圖,AB是⊙O的直徑,BE是⊙O的切線,切點為B.點C為射線BE上一動點(點C與B不重合),且弦AD平行于OC.
(1)求證:CD是⊙O的切線;
(2)設⊙O的半徑為r.試問:當動點C在射線BE上運動到什么位置時,有AD=
2
r?請回答并證明你的結論.
分析:(1)要證明CD是⊙O的切線只要證明OD⊥DC即可;
(2)當BC=OB時,AD=
2
r,由已知可求得∠AOD=90°,從而利用勾股定理可求得AD的長.
解答:精英家教網(wǎng)(1)證明:連接OD;
∵OA=OD,
∴∠A=∠1,
∵OC∥AD,
∴∠A=∠3,∠1=∠2,
∴∠2=∠3;
∵OD=OB,OC=OC,
∴△ODC≌△OBC,
∴∠ODC=∠OBC=90°,
∵OD是⊙O的半徑,
∴CD是⊙O的切線.

(2)解:當BC=r時;
∵∠OBC=90°,BO=BC=r,
∴∠3=∠A=∠1=45°,
∴∠AOD=90°,
∴AD=
OA2+OD2
=
2
r.
點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點,過點M作DM⊥AB,交弦AC于點E,交⊙O于點F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點E是
AD
的中點,連接BE交AC于點G,BG的垂直平分線CF交BG于H交AB于F點.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點B的弦BD⊥OC交⊙O于點D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當BC=BD,且BD=12cm時,求圖中陰影部分的面積(結果不取近似值).

查看答案和解析>>

同步練習冊答案