【題目】小明為探究函數(shù)的圖象和性質(zhì),需要畫出函數(shù)圖象,列表如下:
…… | …… | |||||||||||
…… | …… |
根據(jù)上表數(shù)據(jù),在平面直角坐標系中描點,畫出函數(shù)圖象,如圖如示,小明畫出了圖象的一部分.
(1)請你幫小明畫出完整的的圖象;
(2)觀察函數(shù)圖象,請寫出這個函數(shù)的兩條性質(zhì):
性質(zhì)一: ;
性質(zhì)二: .
(3)利用上述圖象,探究函數(shù)圖象與直線的關(guān)系;
①當 時, 直線與函數(shù)在第一象限的圖象有一個交點,則的坐標是 ;
②當為何值時,討論函數(shù)的圖象與直線的交點個數(shù).
【答案】(1)見解析;(2)性質(zhì)一:圖象有兩個分支,分別在第一、第二象限;性質(zhì)二:圖象在第一象限時,y隨x的增大而減小,在第二象限時,y隨x的增大而增大;(3)①當b=2,A(1,1),②當b>2時,兩個函數(shù)有三個交點;當b=2時,兩個函數(shù)有兩個交點;當b<2時,兩函數(shù)有一個交點
【解析】
(1)根據(jù)表格描點,連線即可;
(2)根據(jù)圖象觀察即可得出結(jié)論;
(3)①當x>0時,方程-x+b=,整理得x2-bx+1=0,根據(jù)直線y=-x+b與函數(shù)的圖象在第一象限只有一個交點,可得=0,解得b=2,把b=2代入x2-bx+1=0,即可的到點A的坐標;
②由一次函數(shù)的性質(zhì)可得的圖象經(jīng)過必定經(jīng)過二、四象限,所以當x<0時,直線y=-x+b與函數(shù)的圖象在第二象限只有一個交點,再結(jié)合圖象討論當x>0時的情況,即可得出答案.
解:(1)繪制完整圖象如下圖:
;
(2)由圖象可得:圖象有兩個分支,分別在第一、第二象限;
圖象在第一象限時,y隨x的增大而減小,在第二象限時,y隨x的增大而增大;
(3)①當x>0時,方程-x+b=,即為-x+b=,
整理得x2-bx+1=0,
∵直線y=-x+b與函數(shù)的圖象在第一象限只有一個交點,
∴=0,即b2-4=0,
解得b=2,b=-2(不符合題意,舍去),
把b=2代入x2-bx+1=0,
解得x1=x2=1,
故點A的坐標為(1,1);
②∵的k值小于0,
∴圖象經(jīng)過必定經(jīng)過二、四象限,
∴當x<0時,直線y=-x+b與函數(shù)的圖象在第二象限只有一個交點,
由①可知,當x>0,b=2時,直線y=-x+b與函數(shù)的圖象在第一象限只有一個交點,
∴當b=2時,兩個函數(shù)有兩個交點,
結(jié)合圖象可知當b>2時,兩個函數(shù)有三個交點,當b<2時,兩函數(shù)有一個交點,
綜上:當b>2時,兩個函數(shù)有三個交點;當b=2時,兩個函數(shù)有兩個交點當b<2時;兩函數(shù)有一個交點.
科目:初中數(shù)學 來源: 題型:
【題目】“六一”兒童節(jié)前,玩具商店根據(jù)市場調(diào)查,用2500元購進一批兒童玩具,上市后很快脫銷,接著又用4500元購進第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進價多了10元.第一、二批玩具每套的進價分別是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,點在邊上(點與點不重合),以點為圓心,為半徑作⊙交邊于另一點,,交邊于點.
(1)求證:;
(2)若,求關(guān)于的函數(shù)關(guān)系式并寫出定義域;
(3)延長交的延長線于點,聯(lián)結(jié),若與相似,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在當前國際“新冠肺炎”疫情防控的緊要關(guān)頭,“中國制造”呈現(xiàn)出強大實力.據(jù)國家海關(guān)總局統(tǒng)計,4月25日當天,中國的口罩出口量就達10.6億只.將數(shù)10.6億用科學記數(shù)法表示為m10n,那么m,n的值分別為()
A.10.6,8B.10.6,9C.1.06,9D.1.06,10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=10,BC=16,點D為BC邊上的一個動點(點D不與點B、點C重合).以D為頂點作∠ADE=∠B,射線DE交AC邊于點E,過點A作AF⊥AD交射線DE于點F.
(1)求證:ABCE=BDCD;
(2)當DF平分∠ADC時,求AE的長;
(3)當△AEF是等腰三角形時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù) y=ax2+bx+c (a≠0)的圖象如圖所示,則下列結(jié)論:①abc<0;②b2﹣4ac<0;③2a+b>0;④a﹣b+c<0,其中正確的個數(shù)( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我市雙城同創(chuàng)的工作中,某社區(qū)計劃對1200m2的區(qū)域進行綠化,經(jīng)投標,由甲、乙兩個施工隊來完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為300m2區(qū)域的綠化時,甲隊比乙隊少用3天.
(1)甲、乙兩施工隊每天分別能完成綠化的面積是多少?
(2)設(shè)先由甲隊施工x天,再由乙隊施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)關(guān)系式.
(3)若甲隊每天綠化費用為0.4萬元,乙隊每天綠化費用為0.15萬元,且甲、乙兩隊施工的總天數(shù)不超過14天,則如何安排甲、乙兩隊施工的天數(shù),使施工費用最少?并求出最少費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】年月日下午,由名隊員組成的揚州市第七批支援湖北醫(yī)療隊,肩負著國家的重托和神圣職責使命啟程出征,其中小李、小王和三個同事共五人直接派往一線某醫(yī)院,根據(jù)該院人事安排需要先抽出一人去重癥監(jiān)護,再派兩人到發(fā)熱門診,請你利用所學知識完成下列問題.
(1)小李被派往重癥監(jiān)護的概率是 ;
(2)若正好抽出她們的一同事去往重癥監(jiān)護,請你利用畫樹狀圖或列表的方法,求出小李和小王同時被派往發(fā)熱門診的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)發(fā)現(xiàn)探究:如圖1,矩形和矩形位似,,連接,則線段與有何數(shù)量關(guān)系,關(guān)系是__________.直線與直線所夾銳角的度數(shù)是__________.
(2)拓展探究:如圖2,將矩形繞點逆時針旋轉(zhuǎn)角,上面的結(jié)論是否仍然成立?如果成立,請就圖2給出的情況加以證明.
(3)問題解決:若點是的中點,,連接,,在矩形繞點旋轉(zhuǎn)過程中,請直接寫出長的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com