已知拋物線y=-x2+2mxm2m+2.
(1)判斷拋物線的頂點(diǎn)與直線L:y=-x+2的位置關(guān)系;
。2)設(shè)該拋物線與x軸交于M、N兩點(diǎn),當(dāng)OM?ON=4,且OM≠ON時,求出這條拋物線的解析式;
(3)直線L交x軸于點(diǎn)A,(2)中所求拋物線的對稱軸與x軸交于點(diǎn)B.那么在對稱軸上是否存在點(diǎn)P,使⊙P與直線L和x軸同時相切.若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(1)由拋物線,得頂點(diǎn)坐標(biāo)為
(m,-m+2), 顯然滿足y=-x+2
∴ 拋物線的頂點(diǎn)在直線L上.
(2)設(shè)M(,0),N(,0),且. 由OM?ON=4,,OM≠ON,得.
∵ , ∴ .
當(dāng)時, ,
當(dāng)時,<0,此方程無解
∵ △1=(2m)-4(m+m-2)=-4m+8=-4m+8>0. ∴ m<2.
故取m=-3.
則拋物線的解析式為.
。3)拋物線的對稱軸為x=-3,頂點(diǎn)(-3,5).
依題意,∠CAB=∠ACB=45°.
若點(diǎn)P在x軸的上方,設(shè)(-3,a)(a>0),則點(diǎn)到直線L的距離為a(如圖), ∴ △是等腰直角三角形.
∴ ,. ∴ ,5.
若點(diǎn)P在x軸的下方,設(shè)(-3,-b)(b>0), 則點(diǎn)到直線L的距離為b(如圖),同理可得△為等腰直角三角形,
∴ ,. ∴ ,.
∴ 滿足條件的點(diǎn)有兩個,即(-3,)和(-3,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
1.求b+c的值
2.若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011屆廣東省深圳市華富中學(xué)初三上學(xué)期期中數(shù)學(xué)卷 題型:解答題
已知拋物線y=-x2+mx-m+2.
(Ⅰ)若拋物線與x軸的兩個交點(diǎn)A、B分別在原點(diǎn)的兩側(cè),并且AB=,試求m的值;
(Ⅱ)設(shè)C為拋物線與y軸的交點(diǎn),若拋物線上存在關(guān)于原點(diǎn)對稱的兩點(diǎn)M、N,并且 △MNC的面積等于27,試求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年度濰坊市高密七年級第二學(xué)期期末考試數(shù)學(xué) 題型:解答題
(11·兵團(tuán)維吾爾)(8分)已知拋物線y=-x2+4x-3與x軸交于A、B兩點(diǎn)(A
點(diǎn)在B點(diǎn)左側(cè)),頂點(diǎn)為P.
(1)求A、B、P三點(diǎn)的坐標(biāo);
(2)在直角坐標(biāo)系中,用列表描點(diǎn)法作出拋物線的圖象,并根據(jù)圖象寫出x取何值時,函
數(shù)值大于零;
(3)將此拋物線的圖象向下平移一個單位,請寫出平稱后圖象的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建尤溪初中畢業(yè)學(xué)業(yè)質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
1.求b+c的值
2.若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
3.在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州市區(qū)九年級上學(xué)期期末考試數(shù)學(xué)卷 題型:填空題
(本題滿分5分)已知拋物線y=-x2+bx+c,它與x軸的兩個交點(diǎn)分別為(-1,0),(3,0),求此拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com