【題目】一個有進(jìn)水管與出水管的容器,從某時刻開始的3分內(nèi)只進(jìn)水不出水,在隨后的9分內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的關(guān)系如圖所示.當(dāng)容器內(nèi)的水量大于5升時,求時間x的取值范圍.
【答案】1<x<9
【解析】
試題本題考查了一次函數(shù)的應(yīng)用,主要利用了待定系數(shù)法求一次函數(shù)解析式,以及已知函數(shù)值求自變量的方法.分別求出0≤x<3和3≤x≤12時的函數(shù)解析式,再求出y=5時的x的值,然后根據(jù)函數(shù)圖象寫出x的取值范圍即可.
試題解析:當(dāng)0≤x≤3時,y=5x.
當(dāng)y>5時,5x>5,
解得x>1,
∴1<x≤3.
當(dāng)3<x≤12時,
設(shè)y=kx+b.
則,解得,
∴y=-x+20.
當(dāng)y>5時,-x+20>5,
解得x<9,
∴3<x<9.
∴容器內(nèi)的水量大于5升時,1<x<9.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD是以BD為斜邊的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中點(diǎn)為E,AD與BE的延長線交于點(diǎn)F,則∠AFB的度數(shù)為( )
A.30°
B.15°
C.45°
D.25°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O,∠BAD=90°,AC為直徑,過點(diǎn)A作圓O的切線交CB的延長線于點(diǎn)E,過AC的三等分點(diǎn)F(靠近點(diǎn)C)作CE的平行線交AB于點(diǎn)G,連結(jié)CG.
(1)求證:AB=CD;
(2)求證:CD2=BEBC;
(3)當(dāng)CG= ,BE= 時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知4m=a,8n=b,用含a,b的式子表示下列代數(shù)式: ①求:22m+3n的值,
②求:24m﹣6n的值;
(2)已知2×8x×16=223,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一條直線上從左往右依次有A、B、C、D四個點(diǎn).
(1)如果線段AC、BC、BD的長分別為3a-b、a+b、4a-2b,試求A、D兩點(diǎn)間的距離;
(2)如果將這條直線看作是以點(diǎn)C為原點(diǎn)的數(shù)軸(向右為正方向).
①直接寫出數(shù)軸上與點(diǎn)B距離為a+2b的點(diǎn)所表示的數(shù)______;
②設(shè)線段BD上一動點(diǎn)P所表示的數(shù)為x,求|x+a+b|+|x-3a+3b|的值(用含a、b的代數(shù)表示);
③線段BD上有兩個動點(diǎn)P、M,點(diǎn)P所表示的數(shù)為x,點(diǎn)M所表示的數(shù)為y,直接寫出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含a、b的代數(shù)表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某生物興趣小組在四天的實(shí)驗(yàn)研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同,他們將一頭駱駝前兩晝夜的體溫變化情況繪制成右圖,請根據(jù)圖象回答:
(1)在這個問題中,自變量是什么?因變量是什么?
(2)第一天中,在什么時間范圍內(nèi)這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多少時間?
(3)第三天12時這頭駱駝的體溫是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是AB的中點(diǎn),點(diǎn)D是BC的中點(diǎn),現(xiàn)給出下列等式:①CD=AC-DB,②CD=AB,③CD=AD-BC,④BD=2AD-AB.其中正確的等式編號是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時,四邊形BECD是什么特殊四邊形?說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com