【題目】如圖所示,一條直線上從左往右依次有A、B、C、D四個(gè)點(diǎn).

1)如果線段ACBC、BD的長(zhǎng)分別為3a-b、a+b、4a-2b,試求A、D兩點(diǎn)間的距離;

2)如果將這條直線看作是以點(diǎn)C為原點(diǎn)的數(shù)軸(向右為正方向).

①直接寫(xiě)出數(shù)軸上與點(diǎn)B距離為a+2b的點(diǎn)所表示的數(shù)______;

②設(shè)線段BD上一動(dòng)點(diǎn)P所表示的數(shù)為x,求|x+a+b|+|x-3a+3b|的值(用含a、b的代數(shù)表示);

③線段BD上有兩個(gè)動(dòng)點(diǎn)P、M,點(diǎn)P所表示的數(shù)為x,點(diǎn)M所表示的數(shù)為y,直接寫(xiě)出式子|x-y|+|x+a+b|+|x-y-6a+4b|的最小值______(用含ab的代數(shù)表示).

【答案】16a-4b;(2)①b-2a-3b;②4a-2b;③6a-4b

【解析】

1)根據(jù)線段的和差計(jì)算即可;

2)①先根據(jù)題意表示出點(diǎn)B的坐標(biāo),再分所求點(diǎn)在點(diǎn)B的左右兩種情況討論即可;

②根據(jù)題意可知x-a-b,進(jìn)而得出x+a+b0,由題意可得x3a-3b,進(jìn)而得出x-3a+3b0,進(jìn)一步求解即可;

③由AD的長(zhǎng)即可得出結(jié)果.

解:(1AB=AC-BC=3a-b-a+b=3a-b-a-b=2a-2b;

AD=AB+BD=2a-2b+4a-2b=2a-2b+4a-2b=6a-4b

2)①∵點(diǎn)C為原點(diǎn),BC=a+b

∴點(diǎn)B的坐標(biāo)為:-a-b,

∴數(shù)軸上與點(diǎn)B距離為a+2b的點(diǎn)所表示的數(shù)為(a+2b+-a-b=b-a-b-a+2b=-2a-3b

故答案b-2a-3b;

x-a-bx+a+b0,x3a-3b,即x-3a+3b0,

所以|x+a+b|+|x-3a+3b|=x+a+b-x-3a+3b=4a-2b;

③∵AD=6a-4b,

|x-y|+|x+a+b|+|x-y-6a+4b|的最小值6a-4b

故答案為6a-4b

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了推動(dòng)“龍江經(jīng)濟(jì)帶”建設(shè),我省某蔬菜企業(yè)決定通過(guò)加大種植面積、增加種植種類(lèi),促進(jìn)經(jīng)濟(jì)發(fā)展.2017年春,預(yù)計(jì)種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預(yù)算,種植西紅柿的利潤(rùn)可達(dá)1萬(wàn)元/公頃,青椒1.5萬(wàn)元/公頃,馬鈴薯2萬(wàn)元/公頃,設(shè)種植西紅柿x公頃,總利潤(rùn)為y萬(wàn)元.
(1)求總利潤(rùn)y(萬(wàn)元)與種植西紅柿的面積x(公頃)之間的關(guān)系式.
(2)若預(yù)計(jì)總利潤(rùn)不低于180萬(wàn)元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過(guò)獲得最大利潤(rùn)的 在冬季同時(shí)建造A、B兩種類(lèi)型的溫室大棚,開(kāi)辟新的經(jīng)濟(jì)增長(zhǎng)點(diǎn),經(jīng)測(cè)算,投資A種類(lèi)型的大棚5萬(wàn)元/個(gè),B種類(lèi)型的大棚8萬(wàn)元/個(gè),請(qǐng)直接寫(xiě)出有哪幾種建造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,如圖,已知Rt△DOE,∠DOE=90°OD=3,點(diǎn)Dy軸上,點(diǎn)Ex軸上,在△ABC中,點(diǎn)A,Cx軸上,AC=5∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫(huà)圖(保留作圖痕跡):

1)將△ODEO點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△OMN(其中點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)M,點(diǎn)E的對(duì)應(yīng)點(diǎn)為點(diǎn)N),畫(huà)出△OMN;

2)將△ABC沿x軸向右平移得到△A′B′C′(其中點(diǎn)A,BC的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;

3)求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右依次記為A1、A2、A3、…、An,已知第1個(gè)正方形中的一個(gè)頂點(diǎn)A1的坐標(biāo)為(1,1),則點(diǎn)A2019的縱坐標(biāo)為( )

A. 2019 B. 2018 C. 22018 D. 22019

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠承接了一批紙箱加工任務(wù),用如圖1所示的長(zhǎng)方形和正方形紙板(長(zhǎng)方形的寬與正方形的邊長(zhǎng)相等)加工成如圖所示的豎式與橫式兩種無(wú)蓋的長(zhǎng)方形紙箱.(加工時(shí)接縫材料不計(jì))

若該廠購(gòu)進(jìn)正方形紙板1000張,長(zhǎng)方形紙板2000張.問(wèn)豎式紙盒,橫式紙盒各加工多少個(gè),恰好能將購(gòu)進(jìn)的紙板全部用完;

該工廠某一天使用的材料清單上顯示,這天一共使用正方形紙板50張,長(zhǎng)方形紙板a張,全部加工成上述兩種紙盒,且120<a<136,試求在這一天加工兩種紙盒時(shí),a的所有可能值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)有進(jìn)水管與出水管的容器,從某時(shí)刻開(kāi)始的3分內(nèi)只進(jìn)水不出水,在隨后的9分內(nèi)既進(jìn)水又出水,每分的進(jìn)水量和出水量都是常數(shù).容器內(nèi)的水量y(單位:升)與時(shí)間x(單位:分)之間的關(guān)系如圖所示.當(dāng)容器內(nèi)的水量大于5升時(shí),求時(shí)間x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下面兩個(gè)定理:

線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等;

到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上.

應(yīng)用上述定理進(jìn)行如下推理:

如圖,直線l是線段MN的垂直平分線.

點(diǎn)A在直線l,AM=AN.(  )

BM=BN,點(diǎn)B在直線l.(  )

CMCN,點(diǎn)C不在直線l.

這是如果點(diǎn)C在直線l,那么CM=CN, (  )

這與條件CMCN矛盾.

以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是 (  )

A. ②①① B. ②①②

C. ①②② D. ①②①

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC 中,AB=AC,D、E是斜邊BC上兩點(diǎn),且∠DAE=45°,將△ABE繞點(diǎn)順時(shí)針旋轉(zhuǎn)90后,得到△ACF,連接DF.下列結(jié)論中:①∠DAF=45° ②△≌△ AD平分∠EDF ;正確的有______________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(1,0),(0,2),某拋物線的頂點(diǎn)坐標(biāo)為D(﹣1,1)且經(jīng)過(guò)點(diǎn)B,連接AB,直線AB與此拋物線的另一個(gè)交點(diǎn)為C,則SBCD:SABO=( )

A.8:1
B.6:1
C.5:1
D.4:1

查看答案和解析>>

同步練習(xí)冊(cè)答案