【題目】如圖,已知ABCD是平行四邊形,AE平分∠BAD,CF平分∠BCD,分別交BC、AD于E、F.求證:AF=EC.
【答案】證明:∵四邊形ABCD是平行四邊形, ∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,
∵AE平分∠BAD,CF平分∠BCD,
∴∠EAB= ∠BAD,∠FCD= ∠BCD,
∴∠EAB=∠FCD,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA),
∴BE=DF.
∵AD=BC,
∴AF=EC
【解析】由四邊形ABCD是平行四邊形,AE平分∠BAD,CF平分∠BCD,易證得△ABE≌△CDF(ASA),即可得BE=DF,又由AD=BC,即可得AF=CE.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“全等三角形的對(duì)應(yīng)角相等”的逆命題是_____________.這個(gè)逆命題是_______(填“真”或“假”)命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中點(diǎn)P(一1,m4+1)一定在( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批襯衣進(jìn)行抽檢,得到合格襯衣的頻數(shù)表如下,若出售1200件襯衣,則其中次品的件數(shù)大約是( )
抽取件數(shù)(件) | 50 | 100 | 150 | 200 | 500 | 800 | 1000 |
合格頻數(shù) | 48 | 98 | 144 | 193 | 489 | 784 | 981 |
A.12B.24C.1188D.1176
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC,若三角形ABC的邊長(zhǎng)為1,AE=2,則CD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖(1),若分別以△ABC的三邊AC,BC,AB為邊向三角形外側(cè)作正方形ACDE,BCFG和ABMN,則稱這三個(gè)正方形為△ABC的外展三葉正方形,其中任意兩個(gè)正方形為△ABC的外展雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2 . ①如圖(2),當(dāng)∠ACB=90°時(shí),求證:S1=S2 .
②如圖(3),當(dāng)∠ACB≠90°時(shí),S1與S2是否仍然相等,請(qǐng)說(shuō)明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF,△AEN,△BGM的面積和為S,請(qǐng)利用圖(1)探究:當(dāng)∠ACB的度數(shù)發(fā)生變化時(shí),S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF= ∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com