如圖,在平面直角坐標系中,二次函數(shù)y=ax2+mc(a≠0)的圖象經(jīng)過正方形ABOC的三個頂點,且ac=-2,則m的值為(  )
A.1B.-1C.2D.-2

令x=0,得A點坐標(0,mc),
因為四邊形ABOC為正方形,知∠AOC=45°,
所以c點坐標為:(
mc
2
,
mc
2
),
代入得:
mc
2
=
m2c2
4
+mc
,
左右兩邊都除以
1
4
mc得:amc+2=0,
又有ac=-2,
∴m=1.
故選A.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點B的坐標為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線ACx軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

施工隊要修建一個橫斷面為拋物線的公路隧道,其高度為6米,寬度OM為12米.現(xiàn)以O(shè)點為原點,OM所在直線為x軸建立直角坐標系
(1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點,(x1x2)且(x1+1)(x2+1)=5
(1)試確定m的值;
(2)過點A(-1,-5)和拋物線的頂點M的直線交x軸于點B,求B點的坐標;
(3)設(shè)點P(a,b)是拋物線上點C到點M之間的一個動點(含C、M點),△POQ是以PO為腰、底邊OQ在x軸上的等腰三角形,過點Q作x軸的垂線交直線AM于點R,連接PR.設(shè)△PQR的面積為S,求S與a之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知平面直角坐標系中三點A(2,0),B(0,2),P(x,0)(x<0),連接BP,過P點作PC⊥PB交過點A的直線a于點C(2,y)
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當x取最大整數(shù)時,求BC與PA的交點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知關(guān)于x的二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(3,0),(-2,5).
(1)求這個二次函數(shù)的解析式.
(2)求出此二次函數(shù)的圖象的頂點坐標及其與y軸的交點坐標.
(3)畫出示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x….-10124
y….0-3-435….
(1)求該二次函數(shù)的關(guān)系式;
(2)若A(-4,y1),B(
11
2
,y2)兩點都在該函數(shù)的圖象上,試比較y1與y2的大。
(3)若A(m-1,y1),B(m+1,y2)兩點都在該函數(shù)的圖象上,試比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的坐標是(1,0),點B的坐標是(-3,0).
(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點坐標為(-
b
2a
,
4ac-b2
4a
)].

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,拋物線y=x2-2ax+b2交x軸于兩點M,N,交y軸于點P,其中M的坐標是(a+c,0).
(1)求證:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判斷△ABC的三邊長能否取一組適當?shù)闹,使三角形MND(D為拋物線的頂點)是等腰直角三角形?如能,請求出這組值;如不能,請說明理由.

查看答案和解析>>

同步練習冊答案