如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點B的坐標(biāo)為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線ACx軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.
(1)把點B的坐標(biāo)為(-2,-2)代入y=
k
x
,得:k=4,
則反比例函數(shù)的解析式是:y=
4
x

設(shè)A的橫坐標(biāo)是m,
∵tan∠AOx=4,
∴A的縱坐標(biāo)是:4m,
把A(m,4m)代入y=
4
x
得:m=1或-1(舍去),
故A的坐標(biāo)是(1,4),
把A、B的坐標(biāo)代入y=ax2+bx,得:
a+b=4
4a-2b=-2
,
解得:
a=1
b=3

則拋物線的解析式是:y=x2+3x;

(2)在y=x2+3x中,令y=4,解得:x=1或-4,
則C的坐標(biāo)是(-4,4).
則AC=5,
又∵B的坐標(biāo)為(-2,-2),
∴△ABC中BC邊上的高是:6,
∴S△ABC=
1
2
×5×6=15.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點,與y軸交于點C,A點坐標(biāo)為(-1,0)
(1)求m的值和點B的坐標(biāo);
(2)過A、B、C的三點的⊙M交y軸于另一點D,設(shè)P為弧CBD上的動點P(P不與C、D重合),連接AP交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請求出常數(shù)k;如果不存在,請說明理由;
(3)連接DM并延長交BC于N,交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,試探究BC與FG的位置關(guān)系,并求直線FG的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點A(3,0)為圓心,以5為半徑的圓與x軸相交于B、C,與y軸相交于點D、E.若拋物線y=
1
4
x2+bx+c
經(jīng)過C、D兩點,求拋物線的解析式,并判斷點B是否在拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于40%.經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價x(元)符合一次函數(shù)y=kx+b,且x=80時,y=40;x=70時,y=50.
(1)求一次函數(shù)y=kx+b的表達(dá)式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當(dāng)k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)和二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍;
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的圖象經(jīng)過(0,3),(-2,-5)和(1,4)三點,則它的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=x2+(2m-1)x+m2-1(m為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點,并且頂點在第四象限時,求出它所對應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為Q,拋物線的頂點為P,試求經(jīng)過O、P、Q三點的圓的圓心O′的坐標(biāo);
(3)設(shè)A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側(cè)的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C,
①當(dāng)BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某瓜果基地市場部為指導(dǎo)某地某種蔬菜的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進(jìn)行了調(diào)查的基礎(chǔ)上,對今年這種蔬菜上市后的市場售價和生產(chǎn)成本進(jìn)行了預(yù)測,提供了兩個方面的信息.如圖甲、乙兩圖.
注:兩圖中的每個實心黑點所對應(yīng)的縱坐標(biāo)分別指相應(yīng)月份的售價和成本,生產(chǎn)成本6月份最低;圖甲的圖象是線段,圖乙的圖象是拋物線.
(1)在3月份出售這種蔬菜,每千克的收益(收益=售價-成本)是多少元
(2)設(shè)x月份出售這種蔬菜,每千克收益為y元,求y關(guān)于x的函數(shù)解析式;
(3)問哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+mc(a≠0)的圖象經(jīng)過正方形ABOC的三個頂點,且ac=-2,則m的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案